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Abstract This paper deals with the geometric local theta correspondence at the Iwahori level for dual

reductive pairs of type II over a non-Archimedean field F of characteristic p 6= 2 in the framework of the
geometric Langlands program. First we construct and study the geometric version of the invariants of

the Weil representation of the Iwahori-Hecke algebras. In the particular case of (GL1,GLm ) we give a

complete geometric description of the corresponding category. The second part of the paper deals with
geometric local Langlands functoriality at the Iwahori level in a general setting. Given two reductive

connected groups G and H over F , and a morphism Ǧ×SL2 → Ȟ of Langlands dual groups, we construct

a bimodule over the affine extended Hecke algebras of H and G that should realize the geometric
local Arthur–Langlands functoriality at the Iwahori level. Then, we propose a conjecture describing

the geometric local theta correspondence at the Iwahori level constructed in the first part in terms of

this bimodule, and we prove our conjecture for pairs (GL1,GLm ).
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1. Introduction

In this paper, our aim is to study the geometric local theta correspondence (also known

as the geometric Howe correspondence) at the Iwahori level for dual reductive pairs of

type II in the framework of the geometric Langlands program. We develop this work in

two directions. The first path consists in geometrizing the classical Howe correspondence

at the Iwahori level by means of perverse sheaves and understanding the underlying

geometry. The second path consists in constructing a bimodule that should realize the

geometric local Arthur–Langlands functoriality at the Iwahori level and studying the

relation between the bimodule realizing the geometric Howe correspondence and the one

realizing the geometric local Arthur–Langlands functoriality at the Iwahori level. Some

of the constructions are done in all generality while some others are only established for

dual reductive pairs of type II.

The basic notions of the Howe correspondence from the classical point of view have

been presented in [35]. Let k = Fq be a finite field of characteristic p different from

2, and let F = k((t)) and O = k[[t]]. All representations are assumed smooth and will

be defined over Q`, where ` is a prime number different from p. Let (G, H) be a split

dual reductive pair in some symplectic group Sp(W ) over k. Denote by (S, ω) the Weil

(metaplectic) representation of the metaplectic group associated to Sp(W ); see [22, 35].

We assume that the metaplectic cover admits a section over G(F) and H(F). Then,

the Howe correspondence is a correspondence between some classes of representations of

G(F) and H(F) by means of the restriction of the Weil representation to G(F)× H(F).
This correspondence has been proved in odd characteristic for dual pairs of type I in [39]

and for dual pairs of type II by Howe and Minguez [32].

It is interesting to understand the geometry underlying the Howe correspondence and

establish its analog in the geometric Langlands program. This was initiated by Lafforgue

and Lysenko in [23], where the authors constructed a geometric version of the Weil

representation. The second author then studied the unramified case in [31] from global

and local points of view for dual reductive pairs (Sp2n,SO2m) and (GLm,GLn). One of

our motivations is to extend the results in [31] to the geometric setting of tamely ramified

case (the Iwahori level).

It is known that the Howe correspondence realizes the Langlands functoriality in
some special cases. In the classical setting the reader may refer to [18, 22, 32, 36],
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and in the geometric setting one can refer to [31]. Adams, in [1], suggested conjectural

relations between Howe correspondence and Langlands functoriality. Let Ǧ (respectively,

Ȟ) denote the Langlands dual group of G (respectively, of H) over Q`. Under some

assumptions, it is expected that there is a morphism Ǧ×SL2 → Ȟ such that, if π

is a smooth irreducible representation of G(F) appearing as a quotient of the Weil

representation S and π ′ is the smooth irreducible representation of H(F) which is the

image of π under the Howe correspondence, then the Arthur packet of π ′ is the image of

the Arthur packet of π under the above morphism. For more details, we refer the reader

to [3, 22, 34, 36].

Let us describe the basic setting of this paper. Let IG (respectively, IH ) be a Iwahori

subgroup of G(F) (respectively, H(F)). At the Iwahori level we are interested in the

class of tamely ramified representations. A irreducible smooth representation of (π, V )
of G(F) is called tamely ramified if the space of invariants under the Iwahori subgroup

IG is non-zero. The category of tamely ramified representations is the full subcategory

of smooth representations of finite length consisting of those representations whose all

irreducible subquotients are tamely ramified. Denote by HIG the Iwahori-Hecke algebra

of G. According to [12, Theorem 4.10], there exists an equivalence of categories between

the category of tamely ramified smooth representations of G(F) and the category

of finite-dimensional HIG -modules. By using this result, we are going to work with

finite-dimensional HIG -modules instead of smooth tamely ramified representations of

G(F). Our strategy is to study the bimodule structure of the space of invariants S IG×IH

as a module over the tensor product HIG ⊗HIH of Iwahori-Hecke algebras in a geometrical

setting. In what follows (except for §8, where we will consider any reductive connected

group), we restrict ourselves to the case of dual reductive pairs of type II. More precisely,

let L0 = kn and U0 = km with n 6 m, and let G = GL(L0) and H = GL(U0). Denote

by 5(F) the space U0⊗ L0(F) and by S(5(F)) the Schwartz space of locally constant

functions with compact support on 5(F). This Schwartz space realizes the restriction of

the Weil representation to G(F)× H(F); see [35].

Let us explain in detail the constructions as well as the main results of the

geometrization of the Howe correspondence. Our first step is to define the geometric

counterpoint of the space of invariants S(5(F))IG×IH and the Hecke actions of HIG and

HIH on this space. This is done in §3, where we define the category of IG × IH -equivariant

perverse sheaves PIG×IH (5(F)) on the ind-pro scheme 5(F) as well as the derived

category DIG×IH (5(F)). The construction of these categories uses some limit procedure

(this issue has been taken care of in [31, Appendix B]). Moreover, we define two Hecke

functors geometrizing the bimodule structure of S IG×IH in §4, which define the action

of the category DIG (FlG) of IG-equivariant `-adic sheaves on the affine flag variety FlG
(the same for H) on DIG×IH (5(F)). These are the generalizations to the Iwahori case of

the Schwartz space and Hecke functors defined in [31] at the unramified level.

Next, we study the action of the Hecke functors on DH(O)×IG (5(F)) of H(O)×
IG-equivariant perverse sheaves on 5(F). This category is acted on by the category

PH(O)(GrH ) of H(O)-equivariant perverse sheaves on the affine Grassmannian GrH and

the category PIG (FlG). In §5, combining our computations and a result of [31] in the

unramified case, we prove the following result.
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Theorem A (Theorem 5.18). The Hecke functor

DIG (GrG)→ DH(O)×IG (5(F))

yields an isomorphism at the level Grothendieck groups between K(PIG (GrG))

and K(PH(O)×IG (5(F))) commuting with the above actions of K(PH(O)(GrH )) and

K(PIG (FlG)).

At the unramified level, this isomorphism is actually verified at level of categories

themselves (see [31]), and one would hope that the same would be true at the Iwahori

level.

In §6, we present one of our key results on the simple objects of the category

PIH×IG (5(F)). In Proposition 6.4, we describe these simple objects in the case n = m,

and then we establish the general case.

Theorem B (Theorem 6.6). Assume that n 6 m.

Any irreducible object of PIH×IG (5(F)) is of the form IC(5wN ,r ) for some w in XG ×
Sn,m , where 5wN ,r is the IH × IG-orbit indexed by w on 5(F).

In §7, we restrict ourselves to the case of the dual pairs GL1 and GLm for all m > 1.

In this setting, in a series of propositions, we are able to give a complete geometric

description of the module structure of K(PIG×IH (5(F))) under the action of the Hecke

functors. More precisely, we work with the category DPIG×IH (5(F)), which takes into

consideration the action of the multiplicative group Gm by cohomological shift −1. All

our computations are at the level of perverse sheaves, and the symmetry in this case

comes from the action of the perverse sheaves in PIH (FlH ) associated with the elements

of length zero in the affine extended Weyl group of H .

Theorem C (Theorem 7.9). Let n = 1 and m > 1.

The bimodule K (DPIG×IH (5(F))) is free of rank m over the representation ring of
Ǧ×Gm with basis {IC0, . . . , ICm−1}, and the explicit action of HH is given by the following

formulas: 

For 1 6 i 6 m : ←H H (Lsi , ICi ) −̃→ ICi+1⊕ ICi−1.

For 1 6 i 6 m : ←H H (Lsi ! , ICi ) −̃→ ICi+1,!⊕ ICi−1.

If j 6= i mod m : ←H H (Lsi , IC j ) −̃→ IC j (Q`[1](1/2)+Q`[−1](−1/2)).

If j 6= i mod m : ←H H (Lsi ! , IC j ) −̃→ IC j [−1](−1/2).

For any i and k in Z : ←H H (Lwi , ICk) −̃→ ICk+i .

Section 8 is devoted to a purely general construction on the geometric local

Arthur–Langlands functoriality at the Iwahori level. Consider G and H , two split

reductive connected groups over k, and a map Ǧ×SL2 → Ȟ of dual Langlands groups

over Q`. To this data we attach a bimodule K (X ) over the affine extended Hecke algebras

HG and HH . We propose the following conjecture.
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Conjecture D [15, Conjecture 8.7]. The bimodule over the affine extended Hecke algebras

HG and HH realizing the local geometric Langlands functoriality at the Iwahori level for

the map σ : Ǧ×Gm −→ Ȟ identifies with K (X ).

We also describe some additional properties of the bimodule K (X ) in §8.8. Let us

explain some motivation for this conjecture, as well as the forthcoming Conjecture F.

In [16], the authors conjecture the existence of some category CG over the stack of

Ǧ-local systems over D∗ = Spec(k((t))) endowed with a ‘fiberwise’ action of G(F). Some

conjectures about this category have been formulated in [16]. The construction of this

category is more tractable at the Iwahori level. Denote by NǦ the nilpotent cone of Ǧ,

and by ÑǦ its Springer resolution. The stack quotient NǦ/Ǧ classifies Ǧ-local systems

with regular singularities at the origin and unipotent monodromy. These Ǧ-local systems

are called tamely ramified. Denote by CG,nilp the category obtained from CG via the base

change NǦ/Ǧ → L SǦ(D
∗), where L SǦ(D

∗) stands for the Ǧ-local systems on D∗. The

authors conjecture [16, Formula 0.20] after isomorphism

K (C IG
G,nilp) −̃→ K (ÑǦ/Ǧ), (1.1)

where the left-hand side is the Grothendieck group of the category of IG-invariants in

the category CG,nilp and the right-hand side is the Grothendieck group of the category of

coherent sheaves on the stack ÑǦ/Ǧ. Moreover, this isomorphism should be compatible

with the action of the affine extended Hecke algebra. The stack X appearing in Conjecture

E is a refinement of the stack ÑǦ/Ǧ in our setting.

Let us now explain the link between K (X ) and geometric Howe correspondence at

the Iwahori level. Consider a dual (split) reductive pair (G, H) over k with a given

map Ǧ×SL2 → Ȟ . In [23], the authors constructed a category W called the Weil

category equipped with an action of (G× H)(F). This is a geometrization of the

Weil representation. Inspired by the series of conjectures presented in [16], Lafforgue

conjectured that there should exist an equivalence of categories

W −̃→ CG ×L SȞ (D
∗) CH (1.2)

as categories equipped with an action of (G× H)(F).
Building on Conjectures (1.1) and (1.2), we present a new conjecture at the

level of Grothendieck groups linking the geometric Howe correspondence and local

Arthur–Langlands functoriality at the Iwahori level. Let us first give the context of

this conjecture. Denote by (DW)IG×IH the invariants of the category DW, the latter

being a graded version of W. Denote by DPIG (FlG) the category whose objects are direct

sums of shifted IG-equivariant perverse sheaves on FlG . This monoidal category takes

into consideration the action of Gm by cohomological shift. The category (DW)IG×IH is

acted on by DPIG (FlG) and DPIH (FlH ). The group K (DPIG (FlG))⊗Q` is isomorphic

to the Iwahori-Hecke algebra HIG . Hence, K ((DW)IG×IH ) is a bimodule under the

action of HIG and HIH . According to Iwahori and Matsumoto [19], the Iwahori-Hecke

algebra HIG is isomorphic to the affine extended Hecke algebra HG after specialization.

Hence, the algebra K ((DW)IG×IH ) is a bimodule over HG and HH . Moreover, by the

Kazhdan–Lusztig–Ginzburg isomorphism [14, 21], the affine extended Hecke algebra HG
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is isomorphic to the Ǧ×Gm-equivariant K-theory K Ǧ×Gm (ZǦ) of the Steinberg variety

ZǦ of Ǧ. This isomorphism is used to define HG and HH module structure on K (X ).
Note that the usual Kazhdan–Lusztig–Ginzburg isomorphism can be upgraded to the

following isomorphism:

K (DPIG (FlG)) −̃→ K Ǧ×Gm (ZǦ).

Recently, Bezrukavnikov proved in [10] an equivalence of categories between DIG (FlG)

and the category of coherent sheaves on the Steinberg variety of Ǧ lifting this isomorphism

to the categorical level.

We may now present our second conjecture.

Conjecture E [15]. The bimodule K (X ) is isomorphic to the Grothendieck group of the

category (DW)IG×IH under the action of the affine extended Hecke algebras HG and HH .

If G = GLn and H = GLm , we can give a more concrete conjecture building on our

construction of the geometric version of the Howe correspondence K (DPIG×IH (5(F))).

Conjecture F [15, Conjecture 9.1]. Let G = GLn and H = GLm .

The bimodule K (X ) is isomorphic to the Grothendieck group of the category

K (DPIG×IH (5(F))) under the action of the affine extended Hecke algebras HG and HH .

Section 9 is devoted to the proof of the Conjecture F in a particular case. The result

we obtain is the following.

Theorem G [15, Theorem 9.2]. For any m > 1, Conjecture F is true for the pair

(GL1,GLm).

This theorem expresses the Howe correspondence in terms of K (X ) for pairs

(GL1,GLm). The idea underlying this Theorem is that the explicit description of the

Howe correspondence in the classical setting obtained by Minguez in [32] should be

upgraded to a finer description of the bimodule in terms of the stack X attached to

the map Ǧ×SL2 → Ȟ . This opens an important perspective, as the same description

should also hold for other dual pairs. In particular, it should be interesting to obtain a

similar result for the dual pairs (Sp2n,SO2m) and provide in this way a conceptually new

approach to the computations done in [4, 5]. Another important perspective is a hope

that the whole derived category DIG×IH (5(F)) could possibly be described in terms of

the derived category of coherent sheaves over the stack X in the same spirit as the recent

work in [2, 10].

2. Notation

In this paper, k is an algebraically closed field of characteristic p > 2 except for §§8 and 9,

where k is assumed to be finite. Let F be the fields of Laurent series with coefficients in

k and let O be its ring of integers. Let ` be a prime number different from p. We will

denote by G a connected reductive group over k and by G(F) the set of its F-points. Fix

a maximal torus T and a Borel subgroup B of G containing T . Throughout the paper

we denote by X̌ the lattice of characters of T and by X the cocharacters lattice of T ;



Geometric Howe correspondence and Langlands functoriality 7

for background and details, see [13]. We denote by Ř the set of roots and by R the set

of coroots. Denote by (X̌ , Ř, X, R,1) the root datum associated with (G, T, B), where

1 denotes the basis of simple roots. Denote by X+ the set of dominant cocharacters

of G. Denote by IG the Iwahori subgroup of G(F) associated with B. Denote by Ǧ the

Langlands dual group of G over Q`. All representations are assumed to be smooth and are

considered over Q`. We denote by Rep(Ǧ) (respectively, R(Ǧ)) the category (respectively,

ring) of smooth representations of Ǧ over Q`.
Denote by WG the finite Weyl group of the root datum (X̌ , Ř, X, R,1) and by sα̌ the

simple reflection corresponding to the root α̌. We denote by w0 the longest element of the

Weyl group WG . In all our notation, if there is no ambiguity we will omit the subscript G.

Denote by W̃G the affine extended Weyl group, which is the semi-direct product WG n X ,

where WG acts on X in a natural way. We will assume additionally that the root datum

is irreducible, and the unique highest root will be denoted by α̌0. Let Sa f f = {sα |α ∈
1} ∪ {s0}, where s0 = t−α0sα̌0 . The subgroup Wa f f of W̃G generated by Sa f f is the affine

Weyl group associated with the root datum. Denote by ` the length function defined

on the Coxeter group Wa f f which extends to a length function on W̃G . Let Q denote a

subgroup of X generated by coroots. One has Wa f f −̃→WG n Q, and the subgroup Wa f f
is normal in W̃G and admits a complementary subgroup � = {w ∈ W̃G | `(w) = 0}, the

elements of length zero. Moreover, we have W̃G −̃→Wa f f o�, which we will use as a

description of W̃G .

For any scheme or stack S locally of finite type over k, we denote by D(S) the bounded

derived category of constructible Q`-sheaves over S. Write D : D(S)→ D(S) for the

Verdier duality functor. We denote by P(S) the full subcategory of perverse sheaves in

D(S). We will also use a subcategory DP(S) of D(S) defined over any scheme or stack S.

The objects of DP(S) are the objects of
⊕

i∈Z P(S)[i], and for K , K ′ ∈ P(S) and i, j ∈ Z
the morphisms are

HomDP(S)(K [i], K ′[ j]) =
HomP(S)(K , K ′) if i = j;

0 if i 6= j .

Let X be a scheme of finite type over k, and let G be a connected algebraic group acting

on X . We denote by PG(X) the full subcategory of P(X) consisting of G-equivariant

perverse sheaves. The derived category of G-equivariant Q`-sheaves on X is denoted by

DG(X). For any smooth d-dimensional irreducible locally closed subscheme Z of X , if

i : Z → X is the corresponding immersion, we define the intersection cohomology sheaf

(IC sheaf for short) IC(Z) as the perverse sheaf iZ !∗(Q`)[d].
Let us recall the affine Grassmannian and affine flag variety and some of their

properties; see [8, 33]. We denote by GrG the affine Grassmannian defined as the k-space

quotient G(F)/G(O). If G is the linear algebraic group GLn over k, the k-points of GrG
are naturally identified with the set of lattices in k((t))n ; see [6]. The affine Grassmannian

is an ind-scheme of ind-finite type. Given λ in X , the G(O)-orbit associated with WG .λ

is G(O) · tλ, which we denote by GrλG . We have the Cartan decomposition of G(F):

G(F) =
⋃
λ∈X+

G(O)tλG(O).
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For any λ and µ in X+, GrµG ⊂ GrλG if and only if λ−µ is a sum of positive coroots and

Grλ =
⊔
µ6λ

Grµ.

For any λ in X+, the dimension of GrλG is 〈2ρ̌, λ〉, where ρ̌ = 1
2
∑
α̌∈Ř+ α̌ is the half sum

of positive roots.

Denote by FlG the affine flag variety for G defined as the quotient k-space G(F)/IG ,

which is an ind-scheme of ind-finite type as well. The affine flag variety decomposes as a

disjoint union

FlG =
⋃
w∈W̃G

IGw IG/IG .

The closure of each Schubert cell IGw IG/IG is a union of Schubert cells, and the closure

relations are given by the Bruhat order:

IGw IG/IG =
⋃
w′6w

IGw
′ IG/IG .

For any w ∈ W̃G we will denote the Schubert cell IGw IG/IG by FlwG . It is isomorphic to

A`(w).
Let R be a k-algebra. A complete periodic flag of lattices inside R((t))n is a flag

L−1 ⊂ L0 ⊂ L1 ⊂ · · ·
such that each L i is a lattice in R((t))n , each quotient L i+1/L i is a locally free R-module

of rank 1, and Ln+k = t−1Lk for any k in Z.

For 1 6 i 6 n, denote by {e1, . . . , en} a basis of L0, and set

3i,R =
 i⊕

j=1

t−1 R[[t]]e j

⊕
 n⊕

j=i+1

R[[t]]e j

 .
For all i in Z, we set 3i+n,R = t−13i,R . This defines the standard complete lattice flag

3−1,R ⊂ 30,R ⊂ 31,R ⊂ · · ·
denoted by 3•,R in R((t))n . Each point of GLn(R((t))) gives rise to a flag of lattices inside

R((t))n by applying it to the standard lattice flag. The Iwahori subgroup IG ⊂ GLn(k[[t]])
is precisely the stabilizer of the standard lattice flag 3•,k. For any k-algebra R, FlGLn (R)
is naturally in bijection with the set of complete periodic lattice flags in R((t))n .

Denote by PG(O)(GrG) (respectively, PIG (GrG)) the category of G(O)-equivariant

(respectively, IG-equivariant) perverse sheaves on the affine Grassmannian GrG , and

denote by PIG (FlG) the category of IG-equivariant perverse sheaves on the affine flag

variety FlG . The category PG(O)(GrG) is equipped with a geometric convolution functor

denoted by ? which preserves perversity and makes PG(O)(GrG) into a symmetric

monoidal category; see [33]. We define the extended geometric Satake equivalence in

the following way:

DPG(O)(GrG) −̃→Rep(Ǧ×Gm);
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for any perverse sheaf K in PG(O)(GrG) and any integer i , this functor sends K [i] to

loc(K )⊗ I⊗−i , where I is the standard representation of Gm and loc : PG(O)(GrG)→
Rep(Ǧ) is the Satake equivalence.

One may define a geometric convolution functor on DIG (FlG) as well, but this

convolution functor does not preserve perversity; see [2, 17].

Assume temporarily that the ground field k is the finite field Fq . We define the

Iwahori-Hecke algebra HIG to be the space Cc(IG\G(F)/IG) of locally constant,

IG-bi-invariant compactly supported Q`-valued functions on G(F). We fix a Haar measure

dx on G(F) such that IG is of measure 1, and endow HIG with the convolution functor.

There are two well-known presentations of this algebra by generators and relations.

The first is due to Iwahori and Matsumoto [19], and the second is by Bernstein in

[25, 27]. We will use the second presentation. Moreover, we have the isomorphism

K (DPIG (FlG))⊗Q` −̃→HIG .

3. Geometric model of the Schwartz space at the Iwahori level

Let M0 be a finite-dimensional representation of G over k, and let M = M0⊗k O. The

definitions of the derived category D(M(F)) of `-adic sheaves on M(F) and the category

P(M(F)) of `-adic perverse sheaves on M(F) are given in [31]. The category D(M(F))
is a geometric analog of the Schwartz space of locally constant functions with compact

support on M(F). We recall their definitions briefly and the use them to define the

IG-equivariant version of these categories. One can find general details on ind-pro systems

in [31, Appendix B]. These are the generalizations of the construction in [31] in the tamely

ramified case.

For any two integers N , r > 0 with N + r > 0, set MN ,r = t−N M/tr M . Given positive

integers N1 > N2, r1 > r2, we have the following Cartesian diagram:

MN2,r1

� � i //

p
����

MN1,r1

p
����

MN2,r2

� � i // MN1,r2 ,

(3.1)

where i is the natural closed immersion and p is the projection. Consider the following

functor:

D(MN ,r2) −→ D(MN ,r1)

K −→ p∗K [dim rel(p)]. (3.2)

According to [7, Proposition 4.2.5], the functor (3.2) is fully faithful and exact for the

perverse t-structure. The functor i∗ is fully faithful and exact for the perverse t-structure

as well. This yields a commutative diagram of triangulated categories:

D(MN2,r1
)
� � i∗ // D(MN1,r1

)

D(MN2,r2
)

p∗[dim rel(p)]
OO

� � i∗ // D(MN1,r2
).

p∗[dim rel(p)]
OO

(3.3)
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The derived category D(M(F)) is defined as the inductive 2-limit of derived categories

D(MN ,r ) as N , r go to infinity. Similarly, P(M(F)) is defined as the inductive 2-limit of

the categories P(MN ,r ).

Assume that N + r > 0. The subgroup G(O) acts on MN ,r via its finite-dimensional

quotient G(O/t N+rO). Denote by Is the kernel of the map G(O) −→ G(O/t sO). The

Iwahori subgroup IG acts on MN ,r via its finite-dimensional quotient IG/IN+r . For s > 0,

denote by Ks the quotient IG/Is .

Let r1 > N + r > 0, we have the projection Kr1 � KN+r . This leads to the following

projection between stack quotients,

q : Kr1\MN ,r � KN+r\MN ,r ,

and gives rise to an equivalence of equivariant derived categories,

DKN+r (MN ,r ) −̃→ DKr1
(MN ,r ).

This equivalence is also exact for perverse t-structure. Denote by DIG (MN ,r ) the derived

category of Kr1 -equivariant `-adic sheaves DKr1
(MN ,r ) for any r1 > N + r .

By taking the stack quotient of Diagram (3.1) by KN1+r1 , we obtain

DIG (MN2,r1
)
� � i∗ // DIG (MN1,r1

)

DIG (MN2,r2
)

p∗[dim rel(p)]
OO

� � i∗ // DIG (MN1,r2),

p∗[dim rel(p)]
OO

(3.4)

where each arrow is fully faithful and exact for the perverse t-structure. Define DIG (M(F))
as the inductive 2-limit of DIG (MN ,r ) as N , r go to infinity. Similarly, we define the

category PIG (M(F)). Since the Verdier duality D is compatible with the transition

functors in both diagrams (3.3) and (3.4) we have the Verdier duality self-functors D
on DIG (M(F)) and D(M(F)).

In order to define an action of the Hecke functors on DIG (M(F)), let us first define the

equivariant derived category DIG (M(F)×FlG). Let s1, s2 > 0, and set

s1,s2
G(F) = {g ∈ G(F) | t s1 M ⊂ gM ⊂ t−s2 M}. (3.5)

Then s1,s2
G(F) ⊂ G(F) is closed and stable under left and right multiplication by G(O).

Further, s1,s2
FlG = s1,s2

G(F)/IG is closed in FlG . For s′1 > s1 and s′2 > s2, we have the

closed embeddings s1,s2F`G ↪→ s′1,s
′
2
F`G , and the union of s1,s2F`G is the affine flag variety

FlG . The map sending g to g−1 yields an isomorphism between s1,s2
G(F) and s2,s1

G(F).

From now on let us assume that M0 is a faithful representation of G. Then s1,s2F`G ⊂
F`G is a closed subscheme of finite type.

Lemma 3.6. For any s1, s2 > 0, the action of G(O) on s1,s2
FlG factors through the quotient

G(O/t s1+s2+1O).
Proof. Choose a Borel B ′ in GL(M0) such that B = G ∩ B ′. Denote by

M ⊂ M1 ⊂ · · · ⊂ Mn = t−1 M
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the full flag preserved by B ′. The Iwahori subgroup IG consists of the elements g of G(F)
preserving M together with the flag (M)i above. Hence the map from F`G to F`GL(M0)

sending a point gIG to the flag (gM ⊂ gM1 ⊂ · · · ⊂ gMn) is a closed immersion. Thus

s1,s2
FlG is realized as the closed subscheme in the scheme classifying a lattice M ′ such

that t s1 M ⊂ M ′ ⊂ t−s2 M together with the full flag

M ′ ⊂ M ′1 ⊂ · · · ⊂ M ′n = t−1 M ′.

The action of G(O) on the latter scheme factors through G(O/t s1+s2+1O).
The action of IG on s1,s2

FlG factors through Ks = IG/Is for s > s1+ s2+ 1. If s >
max{N + r, s1+ s2+ 1}, the group Ks acts on MN ,r × s1,s2

FlG diagonally, and we can

consider the equivariant derived category DKs (MN ,r × s1,s2
FlG). For s′ > s, one has a

canonical equivalence

DKs (MN ,r × s1,s2
FlG) −̃→ DKs′ (MN ,r × s1,s2

FlG).

Define DIG (MN ,r × s1,s2
FlG) as the category DKs (MN ,r × s1,s2

FlG) for any s > max{N +
r, s1+ s2+ 1}.

We define the category DIG (M(F)×FlG) as the inductive 2-limit of the category

DIG (MN ,r × s1,s2
FlG) as N , r, s1, s2 go to infinity. The subcategory PIG (M(F)×FlG) ⊂

DIG (M(F)×FlG) of perverse sheaves is defined along the same lines.

4. Hecke functors at the Iwahori level

We use the same notation as in the previous section. Denote by µ̌ in X̌+ the character by

which G acts on det(M0). The connected components of the affine Grassmannian GrG are

indexed by the algebraic fundamental group π1(G) of G; see [8]. For θ in π1(G), choose λ

in X+ whose image in π1(G) equals θ . Denote by Gr θG the connected component of GrG
containing GrλG . The affine flag manifold FlG is a fibration over GrG with typical fiber

G/B. Hence the connected components of the affine flag variety FlG are also indexed

by π1(G). For θ in π1(G), denote by FlθG the preimage of Gr θG in FlG . Set s1,s2
FlθG =

FlθG ∩ s1,s2
FlG .

Let us now define the Hecke functors (geometrization of the action of the Iwahori-Hecke

algebra HIG on the invariants of the Weil representation under the action of IG) of

PIG (FlG) on DIG (M(F)), denoted by

←
H G : DIG (FlG)× DIG (M(F)) −→ DIG (M(F)). (4.1)

Consider the following isomorphism:

α : M(F)×G(F) // M(F)×G(F)

(v, g) // (g−1v, g).

Any element (a, b) ∈ IG × IG acts on the source by (a, b).(v, g) = (av, agb) and acts on

the target (v′, g′) by (a, b).(v′, g′) = (b−1v′, ag′b). The map α is IG × IG-equivariant with

respect to these two actions. Hence this yields a morphism of stacks,

M(F)×FlG −→ (M(F)/IG)×FlG ,
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and enables us to define the following morphism of stack quotients:

actq : IG\(M(F)×FlG) −→ (M(F)/IG)× (IG\FlG),

where the action of IG on M(F)×FlG is the diagonal one. The following lemma

generalizes a construction done in [31, §4] to the Iwahori case.

Lemma 4.2. There exists an inverse image functor

act∗q : DIG (M(F))× DIG (FlG) −→ DIG (M(F)×FlG)

which preserves perversity and is compatible with the Verdier duality in the following way:

for any K in DIG (M(F)) and F in DIG (FlG), we have

D(act∗q(K, T )) −̃→ act∗q(D(K),D(T )).

Proof. Given N , r, s1, s2 > 0 with r > s1 and s > max{N + r, s1+ s2+ 1}, one can define

the following commutative diagram:

MN ,r × s1,s2
G(F) act //

qG

��

MN+s1,r−s1

qM

��
MN ,r

��

MN ,r × s1,s2
FlG

��

pr1oo actq // Ks\MN+s1,r−s1

Ks\MN ,r Ks\(MN ,r × s1,s2
FlG)

proo

actq,s

88

pr2 // Ks\ (s1,s2
FlG).

The action map act sends the couple (v, g) to g−1v. The maps pr1, pr2 and pr are

projections. The map qG sends the couple (v, g) to (v, gIG). All the vertical arrows are

the projections of the stack quotients for the action of the corresponding group. The group

Ks acts diagonally on MN ,r × s1,s2
FlG , and the map actq is equivariant with respect to

this action. This enables us to define the following functor:

DIG (MN+s1,r−s1)× DIG (s1,s2
FlG)

temp−→ DIG (MN ,r × s1,s2
FlG),

sending (K, T ) to

(act∗q,sK)⊗ pr∗2T [dim(Ks)− c+ s1 dim M0],
where c equals 〈θ, µ̌〉 over s1,s2

FlθG .
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Set r1 > r2 and s > max{s1+ s2, N + r1}. Then we have the diagram

Ks\(MN ,r1 × s1,s2
FlG)

��

actq,s // Ks\(MN+s1,r1−s1)

��
Ks\(MN ,r2 × s1,s2

FlG)
actq,s // Ks\(MN+s1,r2−s1).

(4.3)

The functors temp and the transition functors in (4.3) are compatible. This gives rise

to a functor

tempN ,s1,s2
: DIG

(MN+s1)× DIG
(s1,s2

FlG) −→ DIG
(MN × s1,s2

FlG),

where MN = t−N M .

Let N1 > N + s2. Then N 6 N1− s2 6 N1+ s1, and we have the closed immersion

MN ↪→ MN1+s1 . Thus we have

DIG (MN )× DIG (s1,s2
FlG) // DIG (MN1+s1)× DIG (s1,s2

FlG)

tempN1,s1,s2

��
DIG

(MN1 × s1,s2
FlG)

��
DIG (M(F)× s1,s2

FlG),

(4.4)

where the first arrow is the extension by zero under the closed immersion MN ↪→ MN1+s1 .

For any K in DIG (MN ) and any T in DIG (s1,s2
FlG), the image of (K, T ) under the

composition (4.4) does not depend on N1. So we get a functor

temps1,s2
: DIG

(MN )× DIG (s1,s2
FlG) −→ DIG

(M(F)× s1,s2
FlG).

For any s′1 > s1, and s′2 > s2, we have the extension by zero functors

DIG
(s1,s2

FlG) ↪→ DIG
(

s′1,s′2
F`G),

which are compatible with our functor temps1s2
, so this yields the desired functor:

act∗q : DIG
(M(F))× DIG

(FlG)
temp−→ DIG

(M(F)×FlG).

One checks that D(act∗q(K, T )) −̃→ act∗q(D(K),D(T )), and act∗q preserves perversity.

For any N , r, s1, s2 greater than zero satisfying the condition s > max{N + r, s1+ s2+ 1},
consider the projection

pr : Ks\(MN ,r × s1,s2
FlG) −→ Ks\MN ,r ,

which gives us

pr! : DKs (MN ,r × s1,s2
FlG) −→ DKs (MN ,r ).
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These functors are compatible with the transition functors in (4.3) and yield a functor

pr! : DIG (M(F)×FlG) −→ DIG (M(F)).

For any K in DIG
(M(F)) and T in DIG

(FlG), the Hecke operator
←
HG( , ) (4.1), is

defined by
←
H G(T ,K) = pr!(act∗q(K, T )).

Moreover, this functor is compatible with the convolution functor on DIG (FlG). Namely,

given T1, T2 in DIG (FlG) and K in DIG (M(F)), one has naturally

←
H G(T1,

←
H G(T2,K)) −̃→

←
H G(T1 ? T2,K).

One may also consider the category DPIG (FlG) and consider the Hecke functors in the

form ←
H G : DPIG (FlG)× DIG (M(F)) −→ DIG (M(F)) (4.5)

defined by
←
H G(T [i], K ) = ←H G(T , K )[i] for i ∈ Z and T ∈ PIG (FlG).

Let ∗ : PIG (FlG)→̃PIG (FlG) be the covariant equivalence of categories induced by

the map G(F)→ G(F), g 7→ g−1. We may define the right action
→
H G : DIG (FlG)×

DIG (M(F))→ DIG (M(F)) by
→
H G(T , K ) = ←H G(∗T , K ).

Example 4.6. Let R, r > 0, and let tr M ⊂ V ⊂ t−R M be an intermediate lattice stable

under IG . Let K ∈ PIG (MR,r ) be a shifted local system on V/tr M ⊂ t−R M/tr M . We are

going to explain the above construction explicitly in this case. Let T be in DIG (s1,s2
FlG).

Choose r1 > r + s1. If g is a point in s1,s2
FlG , then tr1 M ⊂ gV . So we can define the

scheme

(V/tr M)×̃s1,s2
FlG

as the scheme classifying pairs (gIG ,m) such that gIG is an element of s1,s2
FlG and m

is in (gV )/(tr1 M). For a point (m, g) of this scheme, the element g−1m lies in V/tr M .

Assuming that s > R+ r , we get the diagram

MR+s2,r1

p←− (V/tr M)×̃s1,s2
FlG

actq,s−→ Ks\(V/tr M),

where p is the map sending (gIG ,m) to m. For gG(O) in Gr θG , the virtual dimension1

of V/gV is 〈θ, µ̌〉. The space (V/tr M)×̃s1,s2
FlθG is locally trivial fibration over s1,s2

FlθG
with fiber isomorphic to an affine space of dimension dim(V/tr1 M)−〈θ, µ̌〉. Since K is a

shifted local system, the tensor product act∗q,s K ⊗ pr∗2T is a shifted perverse sheaf. Let

K �̃ T be the perverse sheaf act∗q,s K ⊗ pr∗2T [dim]. The shift [dim] is the unique integer

for which this complex is perverse, and this shift depends on µ̌. Then we have

←
H G(T , K ) = p!(K �̃ T ).

1Recall that, for an O-sublattice W ⊂ L(F), its virtual dimension is dim(W ) := dim(W/W ∩ L)− dim(L/W ∩
L).
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Compatibility. Till now we have been working over an algebraic closed field and we have

ignored all the Tate twists. Let us explain how our construction is compatible with the

classical local theta correspondence when the ground field k is Fq .

Assume temporarily that k = Fq . Let us explain the relation between this geometrical

convolution and classical convolution action in [32] and [35] at the level of functions.

Given K in DIG (M(F)), we can associate with it the function aK in the Schwartz space

S IG (M(F)). If K is represented by the ind-pro system KN ,r in DIG (MN ,r ), then for m in

t−N M0(O) one has

aK (m) = T r(Frm, KN ,r,m)qrd/2,

where d = dim M0, the point m is the image of m in MN ,r , and Frm is the geometric

Frobenius at m. For large enough r , this is independent of r . The Hecke functors on

DIG (M(F)) defined above geometrize the action of the Hecke algebras on S IG (M(F))
corresponding to the following left action of G(F) on S(M(F)): for a point g in G(F)
and a function f in S(M(F)) then

g. f (m) = | det g|−1/2 f (g−1m),

for any m in M(F). To any T in PIG (FlG) one can associate a function on G(F)/IG
given by aT (x) = T r(Frx , Tx ) for x in G(F)/IG . For Ti ∈ PIG (FlG), denoting by fi the

corresponding function, we have

T r(Frg, (T1 ? T2)g) =
∫

x∈G(F)
f1(x) f2(x−1g)dx,

where dx is the Haar measure on G(F) such that IG is of volume 1. Now if F is in

DIG (M(F)), let K = ←H G(T ,F), and denote by f the function associated to F . Then the

function aK associated to K is

aK (m) =
∫

x∈G(F)
|detx |−1/2 f (x−1m)aT (x)dx,

for any m in M(F).
In the following (except for §8) we will restrict ourselves to the case of dual reductive

pairs of type II. Let L0 = kn and U0 = km with n 6 m, and let G = GL(L0) and

H = GL(U0). We put 50 = U0⊗ L0, L = L0(O), U = U0(O), and 5 = 50(O). For any

O-module of finite rank M and any pair N , r of integers such that N + r > 0, we

set MN ,r = t−N M/tr M . Let TG (respectively, TH ) be the maximal torus of diagonal

matrices in G (respectively, in H). Let BG (respectively, BH ) be the Borel subgroup

of upper-triangular matrices in G (respectively, H). Let IG and IH be the corresponding

Iwahori subgroups. Let I0 denote the constant perverse sheaf on 5. Using the previous

construction we have the well-defined category of IG × IH -equivariant perverse sheaves

on 5(F) inside the derived category DIG×IH (5(F)) which is the geometrization of the

invariants of the Schwartz space S(5(F))IG×IH , and two Hecke functors corresponding

to the actions of DPIG (FlG) and DPIH (FlH ) on DIG×IH (5(F)):
←
H G : DPIG (FlG)× DIG×IH (5(F)) −→ DIG×IH (5(F))

and ←
H H : DPIH (FlH )× DIG×IH (5(F)) −→ DIG×IH (5(F)).
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5. Structure of the category PH(O)×IG (5(F))

The purpose of this section is to understand the module structure of the

categoryPH(O)×IG (5(F)) under the action of PIG (FlG) and PH(O)(GrH ). Let U∗ denote

the dual of U . A point v in 5(F) may be seen as a O-linear map v : U∗→ L(F). For

v in 5N ,r , let Uv,r = v(U∗)+ tr L. Then Uv,r is a O-module in L(F). By identifying

GrG with the ind-scheme of lattices in L(F), we may view Uv,r as a point of the affine

Grassmannian GrG . The Iwahori subgroup IG acts on the affine Grassmannian GrG as

well. The IG-orbits are parameterized by cocharacters λ in X . Each orbit is an affine

space. We have the decomposition

G(F) =
⊔
λ∈X

IG tλG(O). (5.1)

For any λ in X+, each G(O)-orbit GrλG decomposes into IG-orbits which are parameterized

by W.λ, and the orbit IG tλG(O) is open in GrλG . For any λ in X , denote by Oλ the IG-orbit

through tλG(O) in GrG . Denote by Oλ its closure. The scheme Oλ is stratified by locally

closed subschemes Oµ, where µ is in X . Note that Oµ ⊂ Oλ does not necessarily imply

that µ 6 λ. Denote by Aλ the IC-sheaf of Oλ which is an object of PIG (GrG).

Lemma 5.2. The set of H(O)-orbits on 5N ,r identifies with the set of lattices R such that

tr L ⊂ R ⊂ t−N L via the map sending v to Uv,r .

Proof. Let M and M ′ be two free O-modules of finite type. If f1 and f2 are two surjections

from M to M ′, then there is h in Aut (M) such that f1 ◦ h = f2. Let us now consider two

elements v1 and v2 of 5N ,r such that Uv1,r = Uv2,r . Adding to vi a suitable element tr5,

we may assume that vi : U∗→ Uv,r is surjective for i = 1, 2. Then the previous argument

implies that there exists h in H(O) such that v1 ◦ h = v2. Thus, for v1 and v2 in 5N ,r , the

H(O)-orbits through v1 and v2 coincide if and only if Uv1,r = Uv2,r . Since n 6 m, each

lattice R such that tr L ⊂ R ⊂ t−N L is exactly of the form Uv,r for some v in 5N ,r .

Let ω̌1 = (1, 0, . . . , 0) be the highest weight of the standard representation of G, and

recall that w0 is the longest element of the finite Weyl group WG .

Lemma 5.3. There is a bijection λ→ 5λ,r between H(O)× IG-orbits on 5N ,r and

elements λ in XG such that for any ν in WG .λ

〈ν, ω̌1〉 6 r and 〈w0(ν), ω̌1〉 6 N . (5.4)

Each orbit 5λ,r consists of points v such that Uv,r lies in IG tλG(O).

Proof. Any lattice R satisfying tr L ⊂ R ⊂ t−N L is of the form Uv,r for some v in 5N ,r .

Consider the lattice Uv,r as a point in GrG . Then by Lemma 5.2 the H(O)× IG-orbits

on 5N ,r are exactly the locally closed subschemes (5λ,r )λ∈XG in 5N ,r such that λ

satisfies (5.4).

For any λ in XG , the perverse sheaves IC(5λ,r ) in PH(O)×IG (5(F)) are independent of

the choice of r if 〈ν, ω̌1〉 < r for any ν in WGλ. The resulting object of PH(O)×IG (5(F))
will be denoted by IC(5λ). Hence we obtain the following.
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Proposition 5.5. The irreducible objects of PH(O)×IG (5(F)) are in bijection with XG : the

irreducible object corresponding to a cocharacter λ in XG is the intersection cohomology

sheaf IC(5λ).

Proposition 5.6. For any λ in XG , the complex
←
H G(Aλ, I0) is canonically isomorphic to

IC(5λ).

This proposition implies that any irreducible object of PH(O)×IG (5(F)) is obtained by

the action of Aλ on I0 for some λ in XG . We will give a proof of this proposition after

some preparation. First note that if λ is dominant then Aλ is G(O)-equivariant, and in

this case Proposition 5.6 results from [31, Proposition 5].

Let us give a description of the complex
←
H G(Aλ, I0). Choose two integers N , r satisfying

N + r > 0 such that, for any ν ∈ WG .λ, condition (5.4) is satisfied. Let 50,r ×̃O
λ

be the

scheme classifying pairs (v, gG(O)), where gG(O) belongs to O
λ

and v is an O-linear

map from U∗ to gL/tr L. Let

π : 50,r ×̃O
λ −→ 5N ,r (5.7)

be the map sending a pair (v, gG(O)) to the composition

U∗ v−→ gL/tr L↪→ t−N L/tr L.

This map is proper. The projection p : 50,r ×̃O
λ→ O

λ
is a vector bundle of rank rnm−

m〈λ, ω̌n〉, where ω̌n = (1, . . . , 1). We obtain in this particular case an isomorphism

←
H G(Aλ, I0) −̃→π!(Q` �̃Aλ), (5.8)

where the complex Q` �̃Aλ is normalized to be perverse; i.e.,

Q` �̃Aλ −̃→ p∗Aλ[dim rel(p)].
As mentioned before, the category PG(O)(GrG) is equipped with a convolution functor.

Consider the following convolution diagram:

GrG ×GrG
p← G(F)×GrG

q→ G(F)×G(O) GrG
m→ GrG , (5.9)

where m is the multiplication. Let F1 and F2 be two G(O)-equivariant perverse sheaves

over GrG ; the convolution functor of these two perverse sheaves is by definition F1 ?F2 =
m!(F1 �̃F2), where the sheaf F1 �̃F2 is perverse equipped with an isomorphism

p∗(F1�F2) −̃→ q∗(F1 �̃F2). (5.10)

According to [17, Proposition 6], the category PIG (GrG) acts on PG(O)(GrG) by

convolution, and this convolution functor ? preserves perversity. We want to use this

result in order to give a dimension estimate for the objects of PIG (GrG).

For µ in X+G , let Bµ be the IC-sheaf associated with the G(O)-orbit tµG(O) in GrG .

Then, for any cocharacter λ in XG the convolution functor Aλ ?Bµ is perverse. For any
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ν in XG , and any point gG(O) in Oν , let Y be the fiber of the map m over this point.

The fiber Y identifies with the affine Grassmannian GrG . For η in XG and δ in X+G , let

Y η,δ be the intersection of Y with IG tηG(O)×G(O) Gr δG .

The restriction of Aλ ?Bµ to Oν is placed in usual degrees smaller than or equal to

−dim Oν , and the restriction of Aλ �̃Bµ|Y η,δ is the constant complex sitting in usual

degrees smaller than or equal to −dim Oη− dim Gr δG .

Lemma 5.11. For any η, ν in XG , and any δ in X+G , the following inequality holds:

2 dim Y η,δ − dim Oη− dim Gr δG 6 −dim Oν .

Proof. Let Bδ,! (respectively, Aη,!) be the constant perverse sheaf on Gr δG (respectively,

Oη) extended by zero with adequate perverse shift on GrG . The extension by zero

functor is right exact for the perverse t-structure. Hence Bδ,! (respectively, Aη,!) lies

in non-positive perverse degrees, and so does the convolution functor Aη,! ?Bδ,!. The

∗-restriction of Aη,! �̃Bδ,! to Y is the extension by zero from Y η,δ to Y of the constant

complex. Hence this complex lies in degrees 2 dim Y η,δ − dim Oη− dim Gr δG + dim Oν , and

so we have the desired inequality.

Proof of Proposition 5.6. Let λ be in XG , and consider the complex π!(Q` �̃Aλ)

appearing in (5.8). For ν in XG , take an H(O)× IG-orbit 5ν,r in 5N ,r . If v is in 5ν,r , let

Yv be the fiber of the map π over v defined in (5.7). The fiber Yv is the scheme classifying

elements gG(O) in O
λ

such that Uv,r is a sublattice of gL. If v is in 5λ,r then Yv is just

a point, and so the map π is an isomorphism over the open subscheme 5λ,r . On the one

hand this implies directly that IC(5λ,r ) appears with multiplicity 1 in the complex of

sheaves
←
H G(Aλ, I0). On the other hand, this gives

dim(5λ,r ) = rnm−m〈λ, ω̌n〉+ dim Oλ.

Let U be the open subscheme of 50,r ×̃O
λ

consisting of pairs (v, gG(O)) such that

gG(O) lies in Oλ and v : U∗ −→ gL/tr L is surjective. The image of U by π is contained

in 5λ,r . So, π induces a surjective proper map

πλ : 50,r ×̃O
λ −→ 5λ,r .

For v in 5ν,r , we stratify Yv by locally closed subschemes Y ηv indexed by cocharacters η in

XG . For any η, the stratum Y ηv parameterizes elements gG(O) in Oη. The ∗-restriction of
Q` �̃Aλ to Y ηv lives in usual degrees smaller than or equal to −dim Oη− rnm+m〈η, ω̌n〉,
and the inequality is strict unless η = λ. We will show that

2 dim Y ηv − dim Oη− rnm+m〈η, ω̌n〉 6 −dim5ν,r (5.12)

and that the inequality is strict unless ν = λ; this would imply our claim. Since we have

dim(5ν,r ) = rnm−m〈ν, ω̌n〉+ dim Oν , the inequality (5.12) becomes

2 dim Y ηv 6 m〈ν− η, ω̌n〉+ dim Oη− dim Oν . (5.13)
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Considering the map πη : 50,r ×̃O
η −→ 5η,r , we see that 5ν,r ⊂ 5η,r . A dominant

cocharacter δ in X+G is called very positive if

δ = (b1 > · · · > bn > 0).

It is natural to stratify Y ηv by locally closed subschemes Y η,δv , where δ runs through very

positive cocharacters. For any such δ, the stratum Y η,δv consists of elements (v, gG(O))
such that the lattice Uv,r is in G(O)-position δ with respect to the lattice gL. For a

point (v, gG(O)) of Y η,δv , the formula of virtual dimensions dim(L/gL)+ dim(gL/Uv,r ) =
dim(L/Uv,r ) gives

〈δ+ η− ν, ω̌n〉 = 0.

Finally, equation (5.13) is equivalent to

2 dim Y η,δv 6 n〈δ, ω̌n〉+ dim Oη− dim Oν .

By using Lemma 5.11 we are reduced to showing that, for any very positive δ, 〈δ, nω̌n −
2ρ̌G〉 > 0. To prove this inequality, notice that

nω̌n − 2ρ̌G = (1, 3, 5, . . . , 2n− 1).

Thus nω̌n − 2ρ̌G is very positive, and so for any very positive cocharacter δ we have

〈δ, nω̌n − 2ρ̌G〉 > 0. This proves the inequality (5.13). Moreover, for any very positive δ,

this inequality is strict unless δ = 0, which is the case if and only if ν = η. This finishes

the proof.

Recall that, according to the Satake isomorphism, PH(O)(GrH ) is equivalent to the

category Rep(Ȟ) of representations of the Langlands dual group Ȟ over Q`. The module

structure of PH(O)×G(O)(5(F)) under the action of the category PH(O)(GrH ) has been

described in [31, §5]. Namely, let U1 (respectively, U2) be the vector subspace of U0,

generated by the first n basis vectors (respectively, by the last m− n basis vectors)

of U0. Thus, U0 = U1⊕U2. Let P ⊂ H be the parabolic subgroup preserving U1. Let

M →̃GL(U1)×GL(U2) the standard Levi factor in P, and let the map κ : Ǧ×Gm→ Ȟ
be the composition

Ǧ×Gm

id×2ρ̌GL(U2)−→ Ǧ× ǦL(U2) = M̌ ↪→ Ȟ . (5.14)

By using the extended Satake equivalence,

gResκ : PH(O)(GrH ) −→ DPG(O)(GrG)

for the functor corresponding to the restriction Rep(Ȟ)→ Rep(Ǧ×Gm) with respect

to κ.

Proposition 5.15 [31, Proposition 4]. The two functors

PH(O)(GrH )→ DH(O)×G(O)(5(F))

given by

T → ←
H H (T , I0) and T → ←

H G(gResκ(T ), I0)

are isomorphic.
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Proposition 5.16. For any λ in XG and T in PH(O)(GrH ), we have the following

isomorphism:
←
H H (T , IC(5λ)) →̃

←
H G(Aλ ? gResκ(T ), I0).

Proof. Since the actions of PIG (FlG) and PH(O)(GrH ) on DH(O)×IG (5(F)) commute, we

get from Proposition 5.6 and [31, Proposition 4]

←
H H (T , IC(5λ)) −̃→

←
H H (T ,

←
H G(Aλ, I0))

−̃→ ←
H G(Aλ,

←
H H (T , I0))

−̃→ ←
H G(Aλ,

←
H G(gResκ(T ), I0))

−̃→ ←
H G(Aλ ? gResκ(T ), I0).

From Proposition 5.6 it also follows that the functor

DIG (GrG)→ DH(O)×IG (5(F)) (5.17)

given by A 7→ ←
H G(A, I0) is exact for the perverse t-structures. It suffices to verify this

for simple objects, and this follows from Proposition 5.6. It is easy to see that neither of

the categories PIG (GrG) or PH(O)×IG (5(F)) is semi-simple. The functor (5.17) commutes

with the actions of PIG (FlG) by convolutions on the left. Let PH(O)(GrH ) act on DIG (GrG)

via gResκ composed with the natural action of DG(O)(GrG) by convolutions on the right.

According to Proposition 5.16, it is natural to expect that (5.17) commutes with the

action of PH(O)(GrH ). From Propositions 5.6 and 5.15 one derives the following.

Theorem 5.18. The functor (5.17) yields an isomorphism at the level of Grothendieck

groups between K(PIG (GrG)) and K(PH(O)×IG (5(F))) commuting with the actions of

K(PH(O)(GrH )) and K(PIG (FlG)).

6. Simple objects of PIG×IH (5(F))

We use the same notation as in the previous section. Our goal is to describe the simple

objects of PIH×IG (5(F)). To do so we study the IH × IG-orbits on 5λ,r defined in [§5,

Lemma 5.3]. It turns out that it is not necessary to do the study for all cocharacters

λ. Indeed, if λ = (a1, . . . , an), we will restrict ourselves to the case where all the ai are

strictly smaller than r . This will be sufficient for our purpose. Let

Stabλ = {g ∈ IG | g(tλL) = tλL}
and

XλN ,r = {v ∈ 5N ,r | Uv,r = tλL + tr L}.
Describing IH × IG-orbits on 5λ,r is equivalent to describing IH ×Stabλ-orbits on XλN ,r .

Assume that n = m.
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Lemma 6.1. The IH ×Stabλ-orbits on XλN ,r are in bijection with the finite Weyl group

WG .

Proof. Let {e1, e2, . . . , en} be the standard basis of the vector space L0, so the Borel

subgroup BG preserves the standard flag associated with the basis (ei )16i6n . Let

(u∗1, u∗2, . . . , u∗m) be the standard basis of the dual space U∗0 . Let v be a point in XλN ,r ,

and consider the induced map

v : U∗/tU∗ −→ Uv,r/(tUv,r + tr L) = tλL/tωn+λL , (6.2)

where ωn = (1, . . . , 1). The map v is an isomorphism, and it may be considered as an

element of Aut(tλL/tωn+λL). Denote by

· · · ⊂ L−1 ⊂ L0 ⊂ L1 ⊂ · · ·
the standard complete flag of lattices inside L(F) preserved by the Iwahori group IG .

For any i in Z, the images of L i ∩ tλL in tλL/tωn+λL define a complete flag which is

preserved by Stabλ. Thus the image of Stabλ in Aut(tλL/tωn+λL) is a Borel subgroup

of G but not necessarily the standard one. Hence the IH ×Stabλ-orbits on the set of

isomorphisms (6.2) are parameterized by the finite Weyl group WG . By Lemma 6.3 below,

each IH ×Stabλ-orbit on XλN ,r is the preimage of an IH ×Stabλ-orbit on the scheme of

isomorphisms (6.2). Finally one gets that IH ×Stabλ-orbits on XλN ,r are exactly indexed

by WG .

By this lemma, the set of IH × IG-orbits on 5λ,r is in bijection by WG .

Lemma 6.3. Let p, q be two integers such that p 6 q. Let B be a free O-module of rank

p, and let A be a free O-module of rank q. Let v1, v2 : A→ B be surjective O-linear

maps such that for i = 1, 2 the induced maps vi : A/t A→ B/t B coincide. Then there is

h ∈ GL(A)(O) with h = 1 mod t such that v2 ◦ h = v1.

Proof. Let Ai be the kernel of vi for i = 1, 2. These are free O-modules of rank q − p.

Choose a direct sum decomposition A = Ai ⊕Wi , where Wi is a free O-module of rank p.

Then there is a unique isomorphism a : W2 −→ W1 such that W2
a−→ W1

v1−→ A coincides

with W2
v2−→ A. The images of Ai ⊗O k in A⊗O k coincide; therefore there exists an

isomorphism of O-modules b : A2 −→ A1 such that b : A2⊗O k −→ A1⊗O k is identity.

Then a⊕ b is the desired map h.

Let τ be an element of WG , and let w = tλτ be the corresponding element in W̃G , where

λ = (a1, . . . , an). Denote by 5wN ,r the IG × IH -orbit on 5N ,r passing through v given by

v(u∗i ) = taτ(i)eτ(i) for i = 1, . . . , n.

The IG × IH -orbits on 5N ,r are exactly 5wN ,r for w in W̃G .

For any w in W̃G , denote by Iw the IC sheaf of the IH × IG-orbit 5wN ,r indexed by w,

and by Iw! the constant perverse sheaf on 5wN ,r extended by zero to 5N ,r . As an object of

PIH×IG (5(F)), it is independent of r , so our notation is unambiguous. We stress that this

notation is only introduced under the assumption that ai < r for all i . As the category

PIH×IG (5(F)) is obtained by filtering inductive 2-limit. Simple objects of this category
are the image of simple objects of the pieces of the limit.
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Proposition 6.4. Recall that n = m. Any irreducible object of PIH×IG (5(F)) is of the form

Iw for some w in W̃G .

Proof. Let λ = (a1, . . . , an). An irreducible object of PIH×IG (5(F)) is the IC-sheaf of an

IH × IG-orbit Y on 5λ,r for some integer r and for some cocharacter λ satisfying (5.4). In

particular, all the ai are smaller than or equal to r . First we will show that we can restrict

ourselves to the case where all the ai are strictly less than r . Assume that ai = r for some

i . For s > r , consider the projection q : 5N ,s → 5N ,r . Then the H(O)× IG-orbit 5λ,s
is open in q−1(5λ,r ). The map q : 5λ,s → 5λ,r is not surjective, but the sheaf IC(Y) is

non-zero over the locus in q−1(5λ,r ) of maps v : U∗→ t−N L/tr L whose geometric fiber

of the image is of maximal dimension n. Hence the IC sheaf of Y is also an IC sheaf of

some IH × IG-orbit on 5λ,s . We are reduced to the case where all the ai are strictly less

than r . Recall that the geometric fiber of an O-module L is L⊗O k.

Next we are going to prove that each IH × IG-equivariant local system on 5wN ,r
is constant. The map XλN ,r → Isom(U∗/tU∗, tλL/tλ+ωn L) given by v→ v̄ is an affine

fibration. The group Hom(U∗, tλ+ωn L/tr L) acts freely and transitively on the fibers of

this map. So we are reduced to showing that any BG × BH -equivariant local system on

any BH × BG-orbit on U0⊗ L0 is constant. This is indeed true, because the stabilizer in

BG of a point in the double coset BGwBG/BG for any w in WG is connected.

If λ is dominant then the image of Stabλ in Aut(tλL/tλ+ωn L) is the standard Borel

subgroup of G. Thus when w = tλ with λ being dominant we have that 5wN ,r is an open

subscheme of 5λ,r and Iw = IC(5λ,r ).
Assume that n 6 m.

In this case, the map (6.2) is not an isomorphism but only a surjection. We may consider

the IH ×Stabλ-orbits on the set of surjections (6.2). Let Sn,m be the set of pairs (s, Is),

where Is is a subset of n elements of {1, . . . ,m} and s : Is −→ {1, . . . , n} is a bijection.

Let W1 ⊂ W2 ⊂ · · · ⊂ Wm = U∗0 be a complete flag preserved by BH . We denote by W i
the image of Wi under the map (6.2). Then Is = {1 6 i 6 m | dim W i > dim W i−1}.

Recall that for λ = (a1, . . . , an) we assume that ai < r for all i . From Lemma 6.3 one

deduces that each IH ×Stabλ-orbit on XλN ,r is the preimage of an IH ×Stabλ-orbit on the

set of surjections (6.2). Let w = (λ, s) be in XG × Sn,m ; then the IH × IG-orbit passing

through v a point of 5N ,r is given by{
v(u∗i ) = tasi esi for i ∈ Is;
v(u∗i ) = 0 for i /∈ Is .

(6.5)

We denote this orbit by 5wN ,r and its closure by 5
w

N ,r . For any w = (λ, s) in XG × Sn,m ,

denote by Iw the IC sheaf of 5wN ,r . The corresponding object of DIH×IG (5(F)) is well

defined and independent of N , r . Denote by Iw! the extension by zero of the constant

perverse sheaf from 5wN ,r to 5N ,r . The corresponding object of DIH×IG (5(F)) is well

defined and independent of N and r .

Theorem 6.6. Any irreducible object of PIH×IG (5(F)) is of the form Iw for some w in

XG × Sn,m .
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Proof. An irreducible object of PIH×IG (5(F)) is the IC-sheaf of an IH × IG-orbit Y on

5λ,r for some integer r and for some cocharacter λ = (a1, . . . , an) satisfying (5.4). As

in the proof of Proposition 6.4, we may assume that all the ai are strictly less than r .

Consider an IH × IG-orbit 5wN ,r on 5N ,r passing through v as defined in (6.5). Let St (v)
be the stabilizer of v in IH × IG . We are going to show that St (v) is connected. This will

imply that any IH × IG-equivariant local system on IH × IG-orbit 5wN ,r is constant.

The stabilizer St (v) of v is a subgroup of IH ×Stabλ. Let Bλ be the image of Stabλ in

Aut(tλL/tλ+ωn L); then Bλ is a Borel subgroup of Aut(tλL/tλ+ωn L). We define two groups

I0,λ and I0,H by the exact sequences

1 −→ I0,λ −→ Stabλ −→ Bλ −→ 1,

and

1 −→ I0,H −→ IH −→ BH −→ 1.

Note that IH is semi-direct product of I0,H and BH . Let St0(v) be the stabilizer of v

in I0,H × I0,λ. By Lemma 6.3, the I0,H × I0,λ-orbit through v on XλN ,r is the affine space

of surjections f : U∗ −→ tλL/tr L such that f = v mod t . Thus St0(v) is connected.

Let v : U∗/tU∗ −→ tλL/tλ+ωn L be the reduction of v mod t . The stabilizer St (v) of v in

BH × Bλ is connected. By Lemma 6.3, the reduction map from St (v) to St (v) is surjective.

Using the exact sequence

1 −→ St0(v) −→ St (v) −→ St (v) −→ 1,

we obtain that St (v) is connected.

7. Study of Hecke functors for n = 1 and m > 1

We will assume that n = 1 and m > 1 in the entire section, and we will give a complete

description of DPIH×IG (5(F)) under the actions of PIH (FlH ) et PIG (FlG). We use the

same notation as in previous section. We will work most of the time over an algebraically

closed field (and ignore the Tate twists).

For 1 6 i 6 m we denote by ωi = (1, . . . , 1, 0, . . . , 0) the cocharacter of TH where 1
appears i times. The Iwahori group IH preserves t−ωi U and tωi U∗. Let �H be the normal

subgroup in the affine extended Weyl group W̃H of elements of length zero. Note that

ωm = (1, . . . , 1) is in �H .

For 1 6 i 6 m, let U i = t−ωi U . Define U i for all i ∈ Z by the property that U i+m =
t−ωm U i for all i . Thus,

· · · ⊂ U−1 ⊂ U 0 ⊂ U 1 ⊂ · · ·
is the standard flag preserved by IH . For any integer k in Z, we denote by ICk the IC

sheaf of U k ⊗ L.

Proposition 7.1. The irreducible objects of PIH×IG (5(F)) are exactly the perverse sheaves

ICk , k ∈ Z.

Proof. The assertion follows from Theorem 6.6.
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We will denote by ICk,! the constant perverse sheaf on U k ⊗ L −U k−1⊗ L extended by

zero. This is a (non-irreducible) perverse sheaf. Denote by I0 = IC0 the constant perverse

sheaf on 5.

Assume temporarily that k is finite. For w ∈ W̃G , denote by jw the inclusion of

FlwG in FlG , and let Lw = jw!∗Q`[`(w)](`(w)/2), the IC sheaf of FlwG . We write Lw! =
jw!Q`[`(w)](`(w)/2) and Lw∗ = jw∗Q`[`(w)](`(w)/2) for the standard and costandard

objects. As jw is an affine map, both Lw! and Lw∗ are perverse sheaves. They satisfy

D(Lw∗) = Lw!, where D denotes the Verdier duality. To each G in PIG (FlG) we attach a

function [G] : G(F)/IG −→ Q` given by for x in G(F)/IG [G](x) = T r(Frx ,Gx ), where

Frx is the geometric Frobenius at x . The function [G] is an element of HIG . In

particular, [Lw!] = (−1)`(w)q−1/2
w Tw and [Lw∗] = (−1)`(w)q1/2

w T−1
w−1 , where qw = q`(w).

Here Tw denotes the characteristic function of the double coset IGw IG .

Let us describe
←
H H (Aλ, I0), for any cocharacter λ of H . Recall that Aλ is the IC sheaf

of the IH -orbit Oλ through tλH(O) in GrH . Let λ = (a1 . . . , am), and choose N , r such

that −N 6 ai < r for all i . Let 50,r ×̃O
λ

be the scheme classifying pairs (v, h H(O)),
where h H(O) is a point in O

λ
and v is a O-linear map L∗→ hU/tr U . Let

π : 50,r ×̃O
λ −→ 5N ,r

be the map sending (v, h H(O)) to the composition L∗ v−→ hU/tr U −→ t−N U/tr U . By

definition, we have
←
H H (Aλ, I0) −̃→π!(Q` �̃Aλ),

where Q` �̃Aλ is normalized to be perverse. Denote by pH the projection of FlH → GrH .

Note that for any T in PIH (FlH ) we have

←
H H (T , I0) −̃→

←
H H (pH !(T ), I0).

For 1 6 i < m, let si be the simple reflection (permutation) (i, i + 1) in WH .

Proposition 7.2. For 1 6 i < m, we have

←
H H (Lsi , I0) −̃→ I0⊗R0(P1,Q`)[1] −̃→ I0⊗ (Q`[1]⊕Q`[−1]).

Similarly,
←
H H (Lsi ! , I0) −̃→ I0[−1].

Proof. One has pH !(Lsi ) −̃→R0(P1,Q`)[1], and the assertion follows.

Assume that m > 1, and let sm = tλτ , where λ = (−1, 0, . . . , 0, 1) and τ = (1,m) is the

reflection corresponding to the highest root. This is the unique affine simple reflection in

W̃H .

Proposition 7.3. If m > 1, we have the following canonical isomorphisms:

←
H H (Lsm , I0) −̃→ IC1⊕ IC−1 and

←
H H (Lsm !, I0) −̃→ IC1,!⊕ IC−1.
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Proof. The composition

FlH
sm
↪→ FlH

pH−→ GrH

is a closed immersion, and so pH !(Lsm ) −̃→Aλ. Thus we have

←
H H (Lsm , I0) −̃→

←
H H (Aλ, I0).

In this case, the scheme O
λ

classifies lattices U ′ such that

· · · ⊂ U−1 ⊂ U ′ ⊂ U 1 ⊂ · · ·
and dim(U ′/U−1) = 1. Let N = r = 1; then the image of the projection

π : 50,1×̃O
λ −→ 51,1

is contained in L ⊗ (U 1/tU ). Let v be a map from L∗ to U 1/tU in the image of π . If

v factors through U−1/tU , then the fiber of π over the point v is P1; otherwise it is a

point. The first claim follows, and the second is analogous.

In a similar way one gets the following.

Proposition 7.4. For 1 6 i 6 m, we have

←
H H (Lsi , ICi ) −̃→ ICi+1⊕ ICi−1 and

←
H H (Lsi !, ICi ) −̃→ ICi+1,!⊕ ICi−1.

Proof. The proof follows from Lemmas 7.2 and 7.3.

The symmetry in our situation is due to the fact that �H acts freely and transitively

on the set of irreducible objects of PIG×IH (5(F)).
For 1 6 i 6 m, there is a unique permutation σi in WH such that t−ωiσi is of length

zero. Indeed, σi is the permutation

(1, 2, . . . ,m− i,m− i + 1, . . . ,m) −→ (i + 1, i + 2, . . . ,m, 1, . . . , i).

For 1 6 i 6 m, we put wi = t−ωiσi . We extend this definition as follows: for any i ∈ Z,

let wi in �H be the unique element such that wiU r = U r+i for any r . For 1 6 i 6 m− 1,

we have w1siw
−1
1 = si+1 and w1smw

−1
1 = s1. Thus, the affine Weyl group of H acts on

the set {s1, . . . , sm} by conjugation.

Proposition 7.5. (1) For any i and k in Z, one has a canonical isomorphism

←
H H (Lwi , ICk) −̃→ ICk+i .

(2) For 1 6 i 6 m, j ∈ Z with j 6= i mod m, one has

←
H H (Lsi , IC j ) →̃ IC j ⊗ (Q̄`[1]⊕ Q̄`[−1]).

Propositions 7.4 and 7.5 describe completely the action of PIH (FlH ) on the simple

objects ICk , k ∈ Z. Now we are going to define the action of the center of PIH (FlH )

on ICk .
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Let σ : Ǧ×Gm −→ Ȟ be given by (5.14). Denote by Resσ : Rep(Ȟ) −→ Rep(Ǧ×Gm)

the corresponding geometric restriction functor. For any G(O)-equivariant perverse sheaf

T on GrH , T is naturally isomorphic to pH !(Z(T )).
Denote by s the standard representation of Gm and by g the standard representation

of Ǧ. The category Rep(Ǧ×Gm) acts on DPIG×IH (5(F)) as follows:
←
H G(s j , ICk) −̃→ ICk[ j].
←
H G(g j , ICk) −̃→ ICk−mj .

(7.6)

It follows that the representation ring R(Ǧ×Gm) acts on K (DPIG×IH (5(F))), which

becomes in this way a free R(Ǧ×Gm)-module of rank m with basis {IC0, . . . , ICm−1}.

Theorem 7.7. The respective actions of the center of PIH (FlH ) and the center of

PIG (FlG) on the category DPIG×IH (5(F)) are compatible. More precisely, the center of

PIH (FlH ) acts via the geometric restriction functor Resσ : Rep(Ȟ) −→ Rep(Ǧ×Gm) on

the irreducible objects ICk for any integer k.

Proof. Let us recall that there is a central functor

Z : PH(O)(GrH ) −→ PIH (FlH )

constructed by Gaitsgory in [17, Theorem 1]. For any S in PH(O)(GrH ), we have

←
H H (Z(S), IC0) −̃→←H H (pH !(Z(S)), IC0) −̃→←H H (S, IC0) −̃→←H G(Resσ (S), IC0), (7.8)

where the last isomorphism is [31, Proposition 5]. Recall that for any k in Z we have
←
H H (Lwk , IC0) −̃→ ICk . For S in PH(O)(GrH ), Z(S) is central, so

←
H H (Z(S), ICk) −̃→←H H (Lwk ,

←
H H (Z(S), IC0)) −̃→←H G(Resσ (S), ICk),

where the last isomorphism is from (7.8). The assertion follows.

Assume that k is a finite field Fq . Let us rewrite all useful formulas obtained in

Propositions 7.2, 7.3 and 7.5, taking into consideration the Tate twists. These formulas

will be used in §9.

Theorem 7.9. The bimodule K (DPIG×IH (5(F))) is free of rank m over R(Ǧ×Gm) with

basis {IC0, . . . , ICm−1} and the explicit action of HH is given by the following formulas:

For 1 6 i 6 m : ←H H (Lsi , ICi ) −̃→ ICi+1⊕ ICi−1.

For 1 6 i 6 m : ←H H (Lsi ! , ICi ) −̃→ ICi+1,!⊕ ICi−1.

If j 6= i mod m : ←H H (Lsi , IC j ) −̃→ IC j (Q`[1](1/2)+Q`[−1](−1/2)).

If j 6= i mod m : ←H H (Lsi ! , IC j ) −̃→ IC j [−1](−1/2).

For any i and k in Z : ←H H (Lwi , ICk) −̃→ ICk+i .

(7.10)
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More generally, for a < b, denote by ICa,b,! the sheaf Q`[b− a] defined on (U b/U a)−{0}
extended by zero to U b/U a . This is not perverse in general. In Grothendieck group

K (DPIH×IG (5(F))) we have

ICa,b,! = ICb− ICa[b− a].
Let ωi = (1, . . . , 1, 0, . . . , 0), where 1 appears i times and 0 appears m− i times.

Proposition 7.11. We have a canonical isomorphism in K (DPIH×IG (5(F))):

←
H H (L tωi !, IC0) −̃→ ICi−m,0,![i −〈ωi , 2ρ̌H 〉]+ IC−m[m− i −〈ωi , 2ρ̌H 〉].

Proof. First note that ←
H H (L tωi, IC0) −̃→←H H (Aωi !, IC0).

Let N = r = 1. The scheme Oωi classifies lattices tU 0 ⊂ U ′ ⊂ U 0 such that

dim(U ′/tU 0) = m− i and (U ′/tU 0)∩ (U m−i/tU 0) = 0. Therefore the orbit Oωi is an

affine space of dimension `(tωi ) = 〈ωi , 2ρ̌H 〉 = (m− i)i . Let 50,1×̃Oωi be the scheme

classifying pairs (v,U ′), where U ′ is in Oωi and v is a map from L∗ to U ′/tU 0. Consider

the map

π : 50,1×̃Oωi −→ 50,1

sending (v,U ′) to v. Then we have

←
H H (Aωi !, IC0) −̃→π! IC(50,1×̃Oωi ),

and the assertion follows from the remark above on the elements ICa,b,!.

8. On the geometric local Langlands functoriality at the Iwahori level

For basic notions in equivariant K -theory, we refer to [14, Chapter 5]. Some of

the constructions we will use are recalled in Appendix. Let us just recall the

Kazhdan–Lusztig–Ginzburg isomorphism and fix some additional notation.

Let k be the finite field Fq . Let G be a connected reductive group over k, and denote by

Ǧ its Langlands dual group over Q`. Assume additionally that [Ǧ, Ǧ] is simply connected.

Let v be an indeterminate. Let (W, S) be the Coxeter group associated with the root

datum defined on G, where W is the finite Weyl group and S the set of simple reflections.

The finite Hecke algebra HW is free Z[v−1, v]-algebra with basis {Tw, w ∈ W } such that

the following rules hold.

(1) (Ts + 1)(Ts − v) = 0 if s ∈ S is a simple reflection.

(2) Ty .Tw = Tyw if `(yw) = `(y)+ `(w).
The group algebra Z[X ] is isomorphic to R(Ť ), the representation ring of the dual torus

to T . We will write eλ for the element of R(Ť ) corresponding to the coweight λ in X .

The affine extended Hecke algebra associated with G was introduced by Bernstein [9] (it

first appeared in [26]) and is isomorphic to the so-called Iwahori-Hecke algebra of a split

p-adic group with connected center. The latter was introduced in [19], and it reflects
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the structure of the space Cc(IG\G(F)/IG) of locally constant compactly supported

Q`-valued functions on G(F) which are bi-invariant under the action of IG . The extended

affine Hecke algebra HG is a free Z[v, v−1]-module with basis {eλTw |w ∈ W, λ ∈ X}, such

that the following hold.

(1) The {Tw} span a subalgebra of HG isomorphic to HW .

(2) The elements {eλ} span a Z[v, v−1]-subalgebra of HG isomorphic to R(Ť )[v−1, v].
(3) For any sα ∈ S with 〈λ, α̌〉 = 0, Tsαeλ = eλTsα .

(4) For any sα ∈ S with 〈λ, α̌〉 = 1, Tsαesα(λ)Tsα = veλ.

Properties (3) and (4) together are equivalent to the following useful formula:

Tsαesα(λ)− eλTsα = (1− v)
eλ− esα(λ)

1− e−α
, (8.1)

where α is a simple coroot, sα the corresponding simple reflection, and λ ∈ X . Properties

(1) and (2) give us two canonical embeddings of algebras:

R(Ť )[v−1, v] ↪→ HG and HW ↪→ HG .

The multiplication in HG gives rise to a Z[v−1, v]-module isomorphism,

HG ' R(Ť )[v−1, v]⊗Z[v−1,v]HW .

This is a v-analog of the Z-module isomorphism [14, 7.1.8],

Z[W̃G] ' R(Ť )⊗Z Z[WG].
Let ǧ be the Lie algebra of Ǧ, let BǦ be the variety of Borel subalgebras in ǧ, and let

NǦ be the nilpotent cone in ǧ. The Springer resolution ÑǦ of NǦ is given by

ÑǦ = {(x, b) ∈ NǦ ×BǦ | x ∈ b}.
Let µ : ÑǦ → NǦ be the Springer map. Let s be the standard coordinate on Gm. We let

Gm act on ǧ by requiring that s sends an element x to s−2x . We also define an action of

Ǧ×Gm on ÑǦ by the formula

(g, s).(x, b) = (s−2gxg−1, gbg−1).

The map µ is Ǧ×Gm-equivariant. The Steinberg variety is defined by

ZǦ = ÑǦ ×NǦ
ÑǦ = {(x, b, b′) ∈ NǦ ×BǦ ×BǦ | x ∈ b∩ b′}.

The extended affine Hecke algebra HG can be considered as a Z[s, s−1]-algebra, where

v = s2. Viewing Z[s, s−1] as the representation ring of Gm , one has the following result

due to Kazhdan, Lusztig, and Ginzburg [14, Theorem 7.2.5]: there is an isomorphism of

natural Z[s, s−1]-algebras

K Ǧ×Gm(ZǦ) −̃→HG . (8.2)

Let us explain briefly what we are going to do. Assume to be given two connected

reductive groups G, H and a homomorphism Ǧ×SL2 → Ȟ , where Ǧ (respectively, Ȟ)
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denotes the Langlands dual group of G over Q` (respectively, of H). We still assume

that the respective derived groups of Ǧ and Ȟ are simply connected. We construct a

bimodule over the affine extended Hecke algebras HG and HH realizing the local geometric

Arthur–Langlands functoriality at the Iwahori level for this homomorphism. We propose

a definition of this explicit kernel at this level of generality given in Conjecture 8.7. It is

based to a large extent on the Kazhdan–Lusztig–Ginzburg isomorphism (8.2).
We fix a maximal torus TG (respectively, TH ) in G (respectively, H) and a Borel

subgroup BG (respectively, BH ) in G (respectively, H) containing TG (respectively, TH ).

Assume that we are given a morphism

σ : Ǧ×SL2 −→ Ȟ ,

and let ξ : SL2 → Ȟ be its second component and η : Ǧ → Ȟ be its first component. Let

α : Gm → SL2 be the standard maximal torus sending an element x to diag(x, x−1). Let

σ : Ǧ×Gm → Ȟ be the restriction of the above homomorphism via id×α:

Ǧ×Gm
id×α // Ǧ×SL2

η×ξ // Ȟ . (8.3)

For any element g in Ǧ we will often denote its image η(g) in Ȟ by the same letter g
as well as for the linearized morphisms between the corresponding Lie algebras. Denote

by
σ : Ǧ×Gm −→ Ȟ ×Gm

the morphism whose first component is σ and whose second component is the second

projection pr2 : Ǧ×Gm −→ Gm. The representation ring R(Ǧ×Gm) is isomorphic to

R(Ǧ)[s, s−1]. Note that (at least for pairs (SO2n,Sp2m) and (GLn,GLm)), according

to [31], the local Langlands functoriality at the unramified level sends the unramified

representation with Langlands parameter γ in Ǧ to the unramified representation with

Langlands parameter σ(γ, q1/2) of Ȟ . This is realized by the restriction homomorphism

Resσ : Rep(Ȟ) −→ Rep(Ǧ×Gm) induced by σ .

On the one hand, it is understood that the standard representation s of Gm corresponds

to the cohomological shift −1 in order to have the compatibility with [31]. On the other

hand, while specializing s, we should think of s as q1/2 to make things compatible with

the theory of automorphic forms.

Let e denote the standard nilpotent element of Lie(SL2)

e =
(

0 1
0 0

)
.

If dξ : Lie(SL2)→ Lie(Ȟ) is the linearized morphism associated to ξ , we denote dξ(e)
by x . As σ is a group morphism, for any z in g, [dη(z), x] = 0. Hence, if z is nilpotent,

so is dη(z)+ x .

Lemma 8.4. The map f from NǦ to NȞ sending any element z in NǦ to z+ x is a

σ -equivariant map. It defines a morphism of stack quotients

f : NǦ/(Ǧ×Gm) −→ NȞ/(Ȟ ×Gm). (8.5)
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Proof. We have the following equality in Lie(SL2):

ses−1 = s2e. (8.6)

This implies that s−2ξ(s)xξ(s)−1 = x . For (g, s) in Ǧ×Gm, let (h, s) = σ(g, s) =
(gξ(s), s). Then for any z in NǦ

s−2gzg−1+ x = s−2h(z+ x)h−1,

which implies that f is σ -equivariant and the morphism of stack quotients f is well

defined.

The Springer map ÑȞ −→ NȞ is (Ȟ ×Gm)-equivariant. By using this and Lemma 8.4

we obtain the following diagram:

X = (ÑǦ/(Ǧ×Gm))×NȞ /(Ȟ×Gm)
(ÑȞ/(Ȟ ×Gm)) //

��

ÑǦ/(Ǧ×Gm)

��
ÑȞ/(Ȟ ×Gm) // NȞ/(Ȟ ×Gm),

where the bottom horizontal map is induced from the Springer map for Ȟ and the vertical

right arrow is the composition of the Ǧ×Gm-equivariant Springer map for Ǧ with the

map f defined in Lemma 8.4. Note that in the left top corner of the diagram we took the

fiber product in the sense of stacks (see [24, §2.2.2]); we denoted it by X . The K -theory

K (X ) of X is naturally a module over the associative algebras K Ǧ×Gm(ÑǦ ×NǦ
ÑǦ) and

K Ȟ×Gm(ÑȞ ×NȞ
ÑȞ ). The action is by convolution (see Section A.1 Appendix). Thanks

to (8.2), these two algebras may be identified with the extended affine Hecke algebras

HG and HH respectively. We may now state the conjecture.

Conjecture 8.7. The bimodule over the affine extended Hecke algebras K Ǧ×Gm(ZǦ) and

K Ȟ×Gm(Z Ȟ ) realizing the local geometric Langlands functoriality at the Iwahori level for

the map σ : Ǧ×Gm −→ Ȟ identifies with K (X ).
Note that, if Ǧ = Ȟ and the map ξ is trivial, then X equals ZǦ and K (X ) identifies

with the extended affine Hecke algebra HG for G. Thus K (X ) is naturally a free module

of rank 1 over both algebras HH and HG .

8.1. Properties of the stack X
Consider the induced variety

NǦ,Ȟ = (Ȟ ×Gm)×Ǧ×Gm
NǦ

with respect to σ (see Appendix for the exact definition of the induced variety). Similarly

consider the induced variety

ÑǦ,Ȟ = (Ȟ ×Gm)×Ǧ×Gm
ÑǦ .
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Proposition 8.8. There exists a natural isomorphism of stacks

X −̃→ (ÑǦ,Ȟ ×NȞ
ÑȞ )/(Ȟ ×Gm),

and so an isomorphism of K-groups

K (X ) −̃→ K Ȟ×Gm (ÑǦ,Ȟ ×NȞ
ÑȞ ).

Proof. Since the map f defined in Lemma 8.4 is σ -equivariant, it induces an Ȟ ×
Gm-equivariant map:

f1 : (Ȟ ×Gm)×Ǧ×Gm
NǦ −→ NȞ . (8.9)

The map f1 in (8.9) induces a map from ÑǦ,Ȟ to NȞ , and we can consider the fiber

product ÑǦ,Ȟ ×NȞ
ÑȞ . Note that ÑǦ,Ȟ/(Ȟ ×Gm) is isomorphic to the stack quotient

ÑǦ/(Ǧ×Gm); see Appendix A.2. It follows that X identifies with the stack quotient

of ÑǦ,Ȟ ×NȞ
ÑȞ by the action of Ȟ ×Gm thanks to the following general fact: if

φ : X −→ Z and ψ : Y −→ Z are equivariant morphisms of G-schemes, then the fiber

product X/G×Z/G Y/G in the category of stacks identifies with the quotient stack

(X ×Z Y )/G.

The action of K Ȟ×Gm (ÑȞ ×NȞ
ÑȞ ) and K Ǧ×Gm (ÑǦ ×NǦ

ÑǦ) by convolution on

K Ȟ×Gm (ÑǦ,Ȟ ×NȞ
ÑȞ ) is defined in §§A.1.2 and A.2 of Appendix.

If the map σ is an inclusion of Ǧ in Ȟ , the natural map

Ȟ ×Ǧ NǦ → (Ȟ ×Gm)×Ǧ×Gm
NȞ ,Ǧ = NǦ,Ȟ

is an isomorphism. We can identify NǦ,Ȟ with the variety of pairs

(hǦ ∈ Ȟ/Ǧ, v ∈ NȞ )

satisfying h−1vh ∈ x +NǦ via the map sending any element of (h, z) of Ȟ ×NǦ to

(hǦ, v = h(z+ x)h−1). The latter map makes sense because Ǧ centralizes x . Thus the

map f1 (8.9) becomes the projection sending any element (hǦ, v) of NǦ,Ȟ to v. In this

case the left Ȟ ×Gm-action on NǦ,Ȟ is such that, for any (h1, s) in Ȟ ×Gm and any

(hǦ, v) in NǦ,Ȟ ,

(h1, s).(hǦ, v) = (h1hξ(s)−1Ǧ, s−2h1vh−1
1 ).

Proposition 8.10. There is a natural isomorphism

K (X ) −̃→ K Ǧ×Gm(ÑǦ ×NȞ
ÑȞ ),

and the R(Ȟ ×Gm)-module structure on the right-hand side is defined by the functor

Resσ : R(Ȟ ×Gm)→ R(Ǧ×Gm).

Proof. The scheme ÑǦ ×NȞ
ÑȞ classifies couples ((z, b1), b), where (z, b1) lies in ÑǦ

and b is Borel subalgebra in Lie(H) containing z+ x . We define an action of Ǧ×Gm on

ÑǦ ×NȞ
ÑȞ as follows: for any (g, s) in Ǧ×Gm and any ((z, b1, b) in ÑǦ ×NȞ

ÑȞ ,

(g, s).((z, b1), b) = (s−2gzg−1, gb1g−1, gξ(s)bξ(s)−1g−1).
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By Lemma A 2 in Appendix we have an Ȟ ×Gm-equivariant isomorphism,

(Ȟ ×Gm)×Ǧ×Gm
(ÑǦ ×NȞ

ÑȞ ) −̃→ ÑǦ,Ȟ ×NȞ
ÑȞ .

Combining this with Proposition 8.8, we get the desired isomorphism.

In the rest of this section we will restrict ourselves to the case of G = GLn and

H = GLm , and we will describe some additional properties of the bimodule K (X ), namely

a filtration and a grading on K (X ), where the graded parts will just be some equivariant

K-theory of Springer fibers. We will always use the same notation for GLr and its

Langlands dual over Q`. In this setting we choose the morphism η to be the canonical

inclusion of GLn into GLm . The map σ is obtained by the composition

GLn ×Gm→ GLn ×SL2
id×ξ−→ GLn ×GLm−n −→ GLm,

where the last arrow is the inclusion of the standard Levi subgroup associated to

the partition (n,m− n) of m, and ξ corresponds to the principal unipotent orbit as

in [3]. Then the restriction of the map ξ to Gm is the cocharacter (0, . . . , 0,m− n−
1,m− n− 3, . . . , 1+ n−m). Let U0 = km be the standard representation of GLm , and let

{u1, . . . , um} be the standard basis of U0. The element x = dξ(e) is a nilpotent element of

Lie(GLm) such that x(ui ) = 0 for 1 6 i 6 n+ 1 and that x(ui+1) = ui for n+ 1 6 i < m.

Let G2 = GLm−n , and let B2 be the unique Borel subgroup in G2 such that x lies in

Lie(B2).

Let ZG2(x) be the stabilizer of x in G2. It acts naturally on ÑǦ ×NȞ
ÑȞ : for any y in

ZG2(x) and any (z, b1, b) in ÑǦ ×NȞ
ÑȞ ,

y.(z, b1, b) = (z, b1, yby−1).

For any s in Gm, the element ξ(s) clearly normalizes ZG2(x) and the semi-direct product

ZG2(x)oGm is a subgroup of G2. The group ZG2(x)oGm acts on ÑǦ ×NȞ
ÑȞ , and this

action commutes with the Ǧ-action.

Theorem 8.11. There exists a Ǧ×Gm-invariant filtration

∅ = F0 ⊂ F1 ⊂ · · · ⊂ Fr = ÑǦ ×NȞ
ÑȞ

such that, for 0 6 i 6 r , each K Ǧ×Gm (F i ) is a submodule over both affine extended

Hecke algebras K Ǧ×Gm (ÑǦ ×NǦ
ÑǦ) and K Ȟ×Gm (ÑȞ ×NȞ

ÑȞ ). Moreover, the spaces

K Ǧ×Gm (F i ) for 0 6 i 6 r define a filtration on K (X ).

Proof. For any Ǧ-orbit O on NǦ , we denote by YO the preimage of O in ÑǦ ×NȞ
ÑȞ

under the projection

ÑǦ ×NȞ
ÑȞ → NǦ

sending (z, b1, b) to z. We refer the reader to [14, §3.2] for details on nilpotent orbits and

stratification of the nilpotent cone NǦ into Ǧ-conjugacy classes and the stratification

of the Steinberg variety of Ǧ. The orbits YO form a Ǧ×Gm-invariant stratification of
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ÑǦ ×NȞ
ÑȞ , which is also ZG2(x)-invariant. The Ǧ-orbit O is given by a partition θ =

(n1 > n2 > · · · > nr > 1) of n. Let Mθ denote the standard Levi subgroup corresponding

to this partition, namely

Mθ −̃→GLn1 × · · ·×GLnr .

We denote by zθ the standard upper-triangular regular nilpotent element in Lie(Mθ ); zθ
lies in the orbit O. Let Zθ be the stabilizer of zθ in Ǧ×Gm; Zθ is connected. Denote by

BǦ,θ the preimage of zθ under the Springer map ÑǦ → NǦ . Let BȞ ,θ be the preimage

of zθ + x under the Springer map ÑȞ → NȞ . We have an isomorphism

(Ǧ×Gm)×Zθ (BǦ,θ ×BȞ ,θ ) −̃→ YO

sending (g, s, b1, b) to (s−2gzθg−1, gb1g−1, gξ(s)bξ(s)−1g−1). Hence we have an

isomorphism of groups

K Ǧ×Gm(YO) −̃→ K Zθ (BǦ,θ ×BȞ ,θ ). (8.12)

According to [37], the scheme BǦ,θ and the scheme BȞ ,θ respectively admit a finite

paving by affine spaces stable under the action of Zθ . Hence (8.12) is a free R(Zθ )-module

of finite type.

We enumerate the nilpotent orbits O1,O2, . . . ,Or in NǦ in such an order that

dim(O1) 6 dim(O2) 6 · · · 6 dim(Or ).

If F
j =⋃i6 j Oi , then F

j
is closed in NǦ , and we have a filtration

∅ = F
0 ⊂ F

1 ⊂ · · · ⊂ F
r = NǦ .

Let F j be the preimage of F
j

in ÑǦ ×NȞ
ÑȞ . We get a Ǧ×Gm-invariant filtration

∅ = F0 ⊂ F1 ⊂ · · · ⊂ Fr = ÑǦ ×NȞ
ÑȞ .

We can refine the filtration F i in such way that the refined filtration is Ǧ×Gm-stable

and the corresponding strata of the stack quotient of (ÑǦ ×NȞ
ÑȞ )/(Ǧ×Gm) satisfy

the assumptions of Lemma 8.13. Then, by using this lemma, we see that for each i the

sequence

0 −→ K Ǧ×Gm(F i−1) −→ K Ǧ×Gm(F i ) −→ K Ǧ×Gm(YOi ) −→ 0

is exact and for 0 6 i 6 r , K Ǧ×Gm(F i ) define a filtration on K (X ). Moreover, for each i ,
K Ǧ×Gm(F i ) is a submodule over both extended affine Hecke algebras K Ǧ×Gm(ÑǦ ×NǦ

ÑǦ) and K Ȟ×Gm(ÑȞ ×NȞ
ÑȞ ).

The above proof relies on the following lemma, whose proof will now be given.

Lemma 8.13 (Cellular fibration). Let us consider the following general situation: k is

an algebraically closed field of arbitrary characteristic and X is a k-stack of finite type

equipped with a filtration

∅ = F0 ⊂ F1 ⊂ · · · ⊂ Fr = X
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by closed substacks of X . Assume that for 1 6 i 6 r there exists an affine space E i and

a connected linear algebraic group P i such that

F i − F i−1 −̃→ E i/P i ,

where E i/P i is the stack quotient. Then the natural sequence

0 −→ K (F i−1) −→ K (F i ) −→ K (E i/P i ) −→ 0

is exact and K (F i ) is a free Z-module.

Proof. Let U i be the unipotent radical of P i , and let Gi = P i/U i be the reductive

quotient. Choose a section of the natural projection from Gi to P i ; it yields a map from

E i/Gi to E i/P i inducing an isomorphism (combined with Thom’s isomorphism)

K (E i/P i ) −̃→ K (E i/Gi ) −̃→ K Gi
(Spec(k)) −̃→R(Gi ),

where R(Gi ) denotes the representations ring of Gi (which is a free Z-module). One has

an exact sequence

K1(E i/P i )
δ−→ K (F i−1) −→ K (E i/P i ) −→ 0.

Let us show that the map δ vanishes. By [14, 5.2.18], we have that

K P i

1 (E i ) −̃→ K Gi

1 (E i ),

and by Thom’s isomorphism for higher K-theory [14, 5.4.17] we obtain that

K Gi

1 (E i ) −̃→ K Gi

1 (Spec(k)).

Now, by [38, Corollary 6.12], K Gi
(Spec(k)) is isomorphic to k∗⊗Z S, where S is a free

abelian group generated by the irreducible representations of Gi . By induction on i we

may assume that K i (F i−1) is a free Z-module. To finish the proof, note that, for any free

Z-module S, one has HomZ(k∗, S) = 0.

9. Howe correspondence in terms of K (X ) for dual reductive pairs of type II

Let G = GLn and H = GLm with n 6 m. We have presented some motivation for

the forthcoming conjecture in the introduction. Consider the Grothendieck group of
the geometric bimodule DPIH×IG (5(F)). The group K (DPIH×IG (5(F))) is naturally a

module over K (DPIG (FlIG )). This K-group K (DPIH (FlIH ))⊗Q` is isomorphic to the

Iwahori-Hecke algebra HIH . According to [19], the Iwahori-Hecke algebra HIH identifies

with HH ⊗Z[s,s−1] Q̄` for the map Z[s, s−1] → Q̄` sending s to q
1
2 . This isomorphism is

naturally upgraded to the isomorphism

K (DPIH (Fl H ))⊗Q` →̃HH ⊗Z[s,s−1]Q`
such that the multiplication by s in HH corresponds to the cohomological shift by

−1 in K (DPIH (Fl H )). Hence under these isomorphisms and Kazhdan–Lusztig–Ginzburg

isomorphism, K (X ) and K (DPIH×IG (5(F))) are bimodules over the affine extended Hecke

algebras HG and HH . Let us enounce the following conjecture.



Geometric Howe correspondence and Langlands functoriality 35

Conjecture 9.1. The bimodules K (X ) and K (DPIH×IG (5(F))) are isomorphic under the

action of extended affine Hecke algebras HH and HG .

The principal result of this paper is the following theorem describing geometric Howe

correspondence in terms of geometric Langlands functoriality for all dual reductive pairs

(GL1,GLm).

Theorem 9.2. Conjecture 9.1 is true for (GL1,GLm) for any m.

9.1. The proof of Theorem 9.2

The rest of the paper is devoted to the proof of Theorem 9.2. Let n = 1 and m > 1,

and let G = GL1 and H = GLm , where we consider them as Langlands dual groups. The

map Ǧ×Gm −→ Ȟ is the composition

Ǧ×Gm −→ Ǧ×SL2 −→ Ǧ×GLm−1 −→ Ȟ ,

where the latter map is the inclusion of the standard Levi subgroup GL1×GLm−1 in

Ȟ and ξ : SL2 → GLm−1 corresponds to the principal unipotent orbit. In particular, the

inclusion Ǧ in Ȟ is the coweight (1, 0, . . . , 0) of the standard maximal torus of Ȟ . The

restriction of ξ to the maximal torus Gm of SL2 is the coweight (0,m− 2,m− 4, . . . , 2−m)
of Ȟ . The element x = dξ(e) in NȞ is the subregular nilpotent element given by x(u1) =
x(u2) = 0 and x(ui+1) = ui for all 2 6 i < m.

Proposition 9.3. The bimodule K (X ) identifies with the Springer fiber BȞ ,x of the

Springer map ÑH → NȞ over the point x.

Proof. In this case we have ÑǦ,Ȟ = Ȟ/Ǧ in such way that the map f1 : ÑǦ,Ȟ =
Ȟ/Ǧ −→ NȞ defined in (8.9) sends hǦ to hxh−1. The element s in Gm acts on

the left-hand side on ÑǦ,Ȟ by sending the right coset hǦ to hξ(s)−1Ǧ. The variety

ÑǦ,Ȟ ×NȞ
ÑȞ identifies with the variety of pairs (hǦ, b) such that b is a Borel subalgebra

in Ȟ and hxh−1 lies in b. Any element (h1, s) in Ȟ ×Gm acts on ÑǦ,Ȟ ×NȞ
ÑȞ by the

formula

(h1, s).(hǦ, b) = (h1hξ(s)−1Ǧ, h1bh−1
1 ).

Denote by BȞ ,x the fiber of the Springer map ÑȞ → NȞ over x . The map

σ : Ǧ×Gm −→ Ȟ ×Gm

sending (g, s) to (gξ(s), s) identifies Ǧ×Gm with the stabilizer in Ȟ ×Gm of the right

coset of the neutral element in Ȟ/Ǧ. Any element (g, s) of Ǧ×Gm acts on the Springer

fiber BȞ ,x by

(g, s).b′ = (gξ(s)b′ξ(s)−1g−1).

This yields an isomorphism

K (X ) −̃→ K Ȟ×Gm(ÑȞ ,Ǧ ×NȞ
ÑȞ ) −̃→ K Ǧ×Gm(BȞ ,x ).

To compute K (X ), we provide an explicit description of the Springer fiber BȞ ,x .
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Lemma 9.4. The Springer fiber BȞ ,x is a configuration of projective lines (Vi )16i6m−1.

For 1 6 i < j 6 m− 1, the intersection V j ∩ Vi is empty unless j = i + 1. The fixed locus

in BȞ ,x under the action of Ǧ×Gm consists of m points p1, p2, . . . , pm−1, pm , where p1
and pm are distinguished points on V1 and Vm and, for 2 6 i 6 m− 1, the point pi is the

intersection of Vi with Vi+1.

Proof. Denote by

F1 ⊂ F2 ⊂ · · · ⊂ Fm = U0

a complete flag on the standard representation U0 of Ȟ preserved by x . The

vector space F1 is a subspace of the vector space Ker(x) = Vect(u1, u2). We have

Vect(u2) = Ker(x)∩ Im(x). If F1 6= Vect(u2), then F2 = x−1(F1) = Vect(u1, u2), F3 =
x−1(F2) = Vect(u1, u2, u3), . . . , and finally the space Fm is equal to x−1(Fm−1) =
Vect(u1, u2, . . . , um) = U0. So we may identify V1 with the projective space of lines in

Vect(u1, u2). The point p2 is F1 = Vect(u2). If F1 = Vect(u2) ⊂ Im(x), then x−1(F1) =
Vect(u1, u2, u3) and V2 can be identified with the space of lines in x−1(F1)/F1. Inside

Vect(u1, u2, u3) one has a distinguished subspace Vect(u1, u2, u3)∩ Im(x) = Vect(u2, u3). If

F2 is different from this subspace, then the whole flag Fi is uniquely defined. So the point

p3 of V2 corresponds to F2 = Vect(u2, u3). If now F1 = Vect(u2) and F2 = Vect(u2, u3),

then x−1(F2) = Vect(u1, u2, u3, u4) and D3 is the space of lines in x−1(F2)/F2. The point

p4 of V3 corresponds to F3 = Vect(u2, u3, u4), and one can continue the construction till

Fm . The point p1 is the standard complete flag on U0, and pm is the flag Vect(u2) ⊂
Vect(u2, u3) ⊂ · · · ⊂ Vect(u2, . . . , um) ⊂ Vect(u1, . . . , um).

This result combined with the cellular fibration lemma in [14, §5.5] implies the

following.

Proposition 9.5. The K-group K Ǧ×Gm(BȞ ,x ) is a free R(Ǧ×Gm)-module of rank m.

Moreover, the R(Ȟ)-module structure on K Ǧ×Gm(BȞ ,x ) comes from Resσ : R(Ȟ) −→
R(Ǧ×Gm).

According to [14, Lemma 7.6.2], the assignment sending Tw to s`(w) for w in WH extends

by linearity to an algebra homomorphism

ε : HWH −→ Z[s, s−1],
and it is known that the induced HH -module IndHH

HWH
ε = HH ⊗HWH

ε is isomorphic to the

polynomial representation [14, 7.6.8]. We have the following crucial chain of isomorphisms

of Z[s, s−1]-modules [14, Formula (7.6.5)]:

K Ȟ×Gm(T ∗BȞ )
Thom−→ K Ȟ×Gm(BȞ )

α−→ R(ŤH )[s, s−1] β−→ IndHH
HWH

ε,

where the first arrow is the Thom isomorphism [14, Theorem 5.4.16], the map α is the

canonical isomorphism

K Ȟ×Gm(BȞ ) −̃→ K Ȟ×Gm(Ȟ/BȞ ) −̃→ K BȞ×Gm(pt)

−̃→ R(ŤH ×Gm) −̃→R(ŤH )[s, s−1], (9.6)

and the map β is given for any λ by β(eλ) = e−λ.
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There is a natural action of HH on K Ǧ×Gm(BȞ ,x ) defined uniquely by the property that

the inclusion of BȞ ,x in BȞ yields an R(Ǧ×Gm)⊗R(Ȟ×Gm)
HH -equivariant surjection

R(Ǧ×Gm)⊗R(Ȟ×Gm)
K Ȟ×Gm(BȞ ) −̃→ K Ǧ×Gm(BȞ ) −→ K Ǧ×Gm(BȞ ,x ).

Consider the diagram

HH
γ1 //

γ2
��

K (DPIH×IG (5(F)))

K Ǧ×Gm(BȞ ,x ),

66

(9.7)

where γ1 sends T to
←
H H (T , I0), and γ2 sends T to the action of T on the structure sheaf

O of BȞ,x . Note that γ1 and γ2 are surjective. We are now going to construct a morphism

J : K Ǧ×Gm (BȞ ,x )→ K (DPIH×IG (5(F))),

which will be induced by γ1. One sees that γ1 factors through the surjective morphism

γ̄1 : HH ⊗HWH
ε → K (DPIH×IG (5(F))) of HH -modules. For proving Theorem 9.2 we are

reduced to proving the following.

Proposition 9.8. There is a unique isomorphism of HH -modules J making diagram (9.7)

commutative. The map J commutes with the HG-actions.

Note that if n = m = 1 then one has IH = H(O), and this proposition can be deduced

from [31, Proposition 4]. If m = 2, we can also provide a quick proof of the proposition; in

this case, both K (DPIH×IG (5(F))) and HH ⊗HWH
ε are free R(Ǧ×Gm)-modules of rank

2, and γ̄1 is an isomorphism.

We have seen in §7 that the module K (DPIG×IH (5(F))) is free of rank m over R(Ǧ×
Gm). In the notation of this section, a basis of the group K (DPIG×IH (5(F))) is given by

the elements ICk for 0 6 k 6 m− 1, and the action of R(Ǧ×Gm) is given on this basis in

(7.10). Besides, according to Theorem 7.7, R(Ȟ) acts via Resσ . A part of these properties

has been already proved for K Ǧ×Gm(BȞ ,x ) in Proposition 9.5. In what follows we will

construct a basis of K Ǧ×Gm (BȞ ,x ), and we will identify the action of HH on this basis

and the basis ICk . The morphism sending one basis to another will be induced by γ1.

Surprisingly, the basis we will construct is not the canonical basis of Lusztig constructed

in [30].

We will use the polynomial representation of the affine extended Hecke algebra HH to

describe the action of HH on this new basis that we will construct. So let us first describe

the representation of HH in R(ŤH )[s, s−1]. Consider the polynomial representation of

the extended affine Hecke algebra HH of H in R(ŤH )[s, s−1]. For v in HH and z in

R(ŤH )[s, s−1], write v ∗ z for the action of v on z. The element eλ denotes the element in

R(ŤH )[s, s−1] corresponding to λ; according to [14, Formula (7.6.1)], eλ as an element of

HH acts on any element u of R(ŤH )[s, s−1] by

eλ ∗ u = e−λu, (9.9)
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and for any simple root α, the action of Tsα on eλ is given by the formula [14, Theorem

7.2.16]

Tsα ∗ eλ = eλ− esα(λ)

eα − 1
− s2 eλ− esα(λ)+α

eα − 1
. (9.10)

This formula was discovered by Lusztig and was the starting point of the K-theoretic

approach to Hecke algebras. The formulas (9.9) and (9.10) together completely determine

the polynomial representation of HH . For λ dominant, the element eλ corresponds

in the Iwahori-Hecke algebra to the function s−`(λ)Ttλ , where `(λ) = 〈λ, 2ρ̌H 〉 and Ttλ

is the characteristic function of the double coset IG tλ IG . Denote by ωi the coweight

(1, . . . , 1, 0, . . . , 0), where 1 appears i times. For 1 6 i < m, denote by wi = tωiσi the

element of length zero. The element w1 is the generator of the group �H of length-zero

elements in W̃H ; for any i in Z, wi = wi
1. In the extended affine Hecke algebra HH , we

have

Ttωi Twi = Tσi .

Further, we have `(tωi ) = `(σi ) = 〈ωi , 2ρ̌Ȟ 〉 = i(m− i), and this gives

eωi = si(i−m)Ttωi . (9.11)

In R(ŤH )[s, s−1], Tσi ∗ 1 = s2i(m−i), and this yields

(si(m−i)eωi Twi ) ∗ 1 = s2i(m−i),

and

Twi ∗ 1 = si(m−i)eωi . (9.12)

Till now we have described the action of the Wakimoto objects and the elements of length

zero. We are going to compute the action of the simple reflections si = (i, i + 1) and

the affine simple reflection sm = tλw0, where λ = (−1, 0, . . . , 0, 1) and w0 = (1,m) is the

longest element of the finite Weyl group of H . For 1 6 i 6 m, we have Tw1 Tsi T
−1
w = Tsi+1

and Tw1 Tsm T−1
w1
= Ts1 . For any integer j in Z, set s j = s j+m and rewrite the above formulas

all together as

Tw1 Tsi T
−1
w1
= Tsi+1 .

Thus, for all i and j in Z,

Tw j Tsi T
−1
w j
= Tsi+ j .

For any cocharacter µ, we have wi tµw−1
i = tσi (µ), and we get

Twi TtµT−1
wi
= Ttσi (µ) .

Proposition 9.13. In the polynomial representation, the element Tsm acts on 1 by (s2−
1)+ s2(m−1)eξ+ω1 , where ξ = (0, 0, . . . , 0,−1).

Proof. Since Tsm = T−1
w1

Ts1 Tw1 , we get, using (9.12),

Tsm ∗ 1 = (T−1
w1

Ts1) ∗ sm−1eω1 .
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Let αi = (0, . . . , 0, 1,−1, 0 . . . , 0) and µi = (0, . . . , 0, 1, 0 . . . , 0), where 1 appears in the

ith place. Then

Ts1 ∗ eω1 = eω1−α1 .

Thus,

Tsm ∗ 1 = T−1
w1
∗ sm−1eω1−α1 . (9.14)

If ξ = −σ−1
1 ω1 = (0, . . . , 0,−1), then ξ is a dominant character, and we have Ttξ T−1

w1
=

T−1
σ1

. Thus

T−1
w1
= s1−me−ξT

σ−1
1
.

Finally, we have to compute

Tsm ∗ 1 = s1−me−ξT
σ−1

1
∗ sm−1eω1−α1 .

On the one hand, the reduced decomposition of σ−1
1 is sm−1 . . . s2s1, and it follows that

T
σ−1

1
= Tsm−1 . . . Ts2 Ts1 . From (9.10), we get that Ts1 ∗ eµ2 = (s2− 1)eµ2 + s2eω1 . For 2 6

i 6 m− 1, we have Tsi ∗ eω1 = s2eω1 . We also have Ts2 ∗ eµ2 = eµ2−α2 = eµ3 , and more

generally, for 1 6 i < m, Tsi ∗ eµi = eµi+1 . By induction we get

T
σ−1

1
∗ eµ2 = (s2− 1)eµm + s2(m−1)eω1 .

This implies that

Tsm ∗ 1 = (s2− 1)+ s2(m−1)eξ+ω1 . (9.15)

In order to prove Proposition 9.8, we have to study the HH -module structure of

K Ǧ×Gm(BȞ ,x ) and compare this action with the results obtained (7.10). Now let us

construct the desired basis of K Ǧ×Gm(BȞ ,x ). Denote by Lλ the line bundle on BȞ

corresponding to coweight λ of H as in [14, §6.1.11]. The Ȟ -module H0(BȞ , Lλ) vanishes

unless (a1 6 · · · 6 am). Recall that the nilpotent subregular element x in End(U0) is such

that x(u1) = x(u2) = 0 and x(ui ) = ui−1 for all 3 6 i 6 m. The natural morphism from

R(ŤH )[s, s−1] to K Ǧ×Gm(BȞ ,x ) sends an element eλ to L−λ. Besides, any element L in

K Ȟ×Gm(ÑȞ ) acts on K Ǧ×Gm(BȞ ,x ) as the tensor product by L|BȞ ,x
.

Let {u1, . . . , um} be the canonical basis of U0, and let {u∗1, . . . , u∗m} be the corresponding

dual basis. For 1 6 i 6 m set

Ui = Vect(u1, . . . , ui ),

and for 1 6 i 6 m− 1 set

U ′i = Vect(u2, . . . , ui+1),

with U ′0 being equal to {0}. Note that for 0 6 i 6 m− 2 the element x acts on Ui+2/U ′i
by zero. For 1 6 i < m, let Vi be the projective line classifying flags

U ′1 ⊂ · · ·U ′i−1 ⊂ Wi ⊂ Ui+1 ⊂ · · · ⊂ Um,
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where Wi is i-dimensional. The line Vi is isomorphic to P(Vect(u1, ui+1)) via the map

sending a line l to the flag given by

U ′1 ⊂ · · ·U ′i−1 ⊂ l⊕U ′i−1 ⊂ Ui+1 ⊂ · · · ⊂ Um .

Then we have BȞ ,x = ∪i Vi (see Lemma 9.4). Recall that there are m fixed points on BȞ ,x

under the action of Ǧ×Gm corresponding to the following flags.

(1) p1 = U1 ⊂ U2 ⊂ · · · ⊂ Um .

(2) For 2 6 k 6 m− 1,

pk = U ′1 ⊂ · · ·U ′k−1 ⊂ Uk ⊂ · · · ⊂ Um .

(3) pm = U ′1 ⊂ U ′2 ⊂ · · · ⊂ U ′m−1 ⊂ Um .

Note that, for 2 6 k 6 m− 1, the point pk equals Vk−1 ∩ Vk .

Each line Vi is endowed with a tautological equivariant line bundle OVi (−1) which is

an equivariant subbundle of gOVi ⊕ sm−2iOVi . Note that, for 1 6 i 6 m− 1,

OVi (−pi ) = s2i−mOVi (−1) and OVi (−pi+1) = g−1OVi (−1).

Thanks to Lusztig [30, §4.7], the elements Op1
, OV1(−1), . . . ,OVm−1(−1) define a basis of

K Ǧ×Gm(BȞ ,x ) over R(Ǧ)[s, s−1].
For 1 6 i < m, consider the line bundle Lωi on BȞ ,x whose fiber at a point F1 ⊂ · · · ⊂

Fm is det(Fi ). Recall that det(U ′i ) −̃→ si(m−i−1) as a Ǧ×Gm-representation. We also have

Lωm = gO in K Ǧ×Gm(BȞ ,x ).

Proposition 9.16. The set of line bundles {O, L−ω1 , . . . , L−ωm−1} forms a basis of K-group

K Ǧ×Gm(BȞ ,x ) after specialization.

Proof. For 1 6 k 6 m− 1, and for any Ǧ×Gm-equivariant line bundle L on BȞ ,x , we

have the following equality in K Ǧ×Gm(BȞ ,x ):

L =
k−1∑
j=1

L |V j
(−p j+1)+ L |Vk

+
m−1∑

j=k+1

L |V j
(−p j ).

We apply this formula to Lωk . Note that

– if j < k, Lωk |V j
= gs(k−1)(m−k)OV j ;

– if j = k, Lωk |V j
= OV j (−1);

– if j > k, Lωk |V j
= sk(m−k−1)OV j .

Hence, we get

Lωk = OVk (−1)+ s(k−1)(m−k)

k−1∑
j=1

OV j (−1)+
m−1∑

j=k+1

s2( j−k)OV j (−1)

 .
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Lastly,

O = Op1
+

m−1∑
j=1

s2 j−mOV j (−1).

Since Op1
, OV1(−1), . . . ,OVm−1(−1) is a basis of K Ǧ×Gm(BȞ ,x ), the previous formulas

imply that O, Lω1 , . . . , Lωm−1 is a free family which becomes a basis after specializing

s to q1/2. If we apply the duality functor, we get the same result for the family

O, L−ω1 , . . . , L−ωm−1 .

Consider the family {O, sm−1L−ω1 , s2(m−2)L−ω2 , . . . , sm−1L−ωm−1}. Thanks to

Proposition 9.16, this family is also a basis of K Ǧ×Gm (BȞ ,x ) after specialization. The

map γ1 factors through morphism J sending this basis to {IC0, . . . , ICm−1}.
According to (9.12), we have

γ2(Twi ) = Twi (O) = si(m−i)eωi = si(m−i)L−ωi .

Hence the action of length-zero elements on the basis is compatible with their action on

{IC0, . . . , ICm} in §7, (7.10).

Now we will compute the action of the affine simple reflection sm . Let λ be the

cocharacter (−1, 0, . . . , 0, 1), and consider the associated line bundle Lλ (respectively,

E) on BȞ ,x whose fiber over a flag F1 ⊂ · · · ⊂ Fm = Um is F∗1 ⊗ Fm/Fm−1 (respectively,

Fm/Fm−1). The section um of the line bundle E yields an exact sequence

0 −→ s2−mO −→ E −→ (Lm−1,m)pm −→ 0.

Note that (E)pm = gOpm
, and (L−ω1)pm = s2−mOpm

. Tensoring by L−ω1 , we get the exact

sequence on BȞ ,x :

0 −→ s2−m L−ω1 −→ Lλ −→ gs2−mOpm
−→ 0.

Consider u∗1 ∧ · · · ∧ u∗m−1 as the global section of L−ωm−1 over BȞ ,x . It vanishes only at

pm , and gives an exact sequence

0 −→ g−1s2−mO −→ L−ωm−1 −→ Opm
−→ 0.

Finally, we conclude that in K Ǧ×Gm(BȞ ,x )

Lλ = s2−m L−ω1 + gs2−mOpm
, and gs2−mOpm

= gs2−m L−ωm−1 − s4−2mO.

Thus

Lλ = s2−m L−ω1 + gs2−m L−ωm−1 − s4−2mO.
From Proposition 9.13 we obtain that

γ2(Tsm ) = Tsm (O) = (s2− 1)O+ s2m−2Lλ = −O+ sm L−ω1 + gsm L−ωm−1 . (9.17)

Finally, s−1Tsm (O)+ s−1O corresponds to
←
H H (Lsm , I0), and formula (9.17) is compatible

with (7.10) by using the fact that Lsm is isomorphic to Q̄`[1]( 1
2 ) over Fl

sm
H . Moreover,

for 1 6 i < m one has Tsi ∗ 1 = v in the polynomial representation; hence Tsi (O) = vO
in K Ǧ×Gm(BȞ ,x ). The other relations are readily obtained by symmetry (the action of

elements of length zero). This finishes the proof of Proposition 9.8 and so Conjecture 9.1.
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Appendix

Let k be an algebraically closed field of characteristic zero. Let G be a linear algebraic

group over Q`. Denote by R(G) the representation ring of G over Q`. By equivariant

K-theory on a scheme or a stack we always mean K-theory of G-equivariant coherent

sheaves. For more details we refer the reader to [14, Chapter 5].

A.1. Generalities on convolution product in K-theory

A.1.1. Let Y be a smooth G-variety, and let π : Y → X be a proper G-equivariant

map. According to [14, 5.2.20], K G(Y ×X Y ) is an associative R(G)-algebra. Moreover,

K G(Y ) is naturally a left module over K G(Y ×X Y ). Namely, for any L in K G(Y ×X Y )
and any F in K G(Y ), consider the restriction with supports (see [14, §5.2.5 (iii)]) of an

element L � F of K G((Y ×X Y )× Y ) with respect to the smooth closed embedding

Y × Y
id× diag→ Y × Y × Y

∪ ∪
Y ×X Y → (Y ×X Y )× Y,

and denote the result by L ⊗ p∗2 F ∈ K G(Y ×X Y ). Then we have L ∗ F = (p1)∗(L ⊗
p∗2 F) ∈ K G(Y ).

A.1.2. Let Z be a smooth variety. Consider a G-equivariant morphism from Z to

X . Then K G(Y ×X Y ) acts on K G(Z ×X Y ) by convolution on the right. Additionally,

this action is R(G)-linear. Namely, for any F in K G(Z ×X Y ) and any L in K G(Y ×X
Y ), consider the element p∗12 F � p∗34L in K G((Z ×X Y )× (Y ×X Y )). Let us apply

the restriction with supports functor with respect to the smooth closed embedding

id× diag× id in the following diagram to p∗12 F � p∗34L:

Z × Y × Y
id× diag× id→ Z × Y × Y × Y

∪ ∪
Z ×X Y ×X Y → (Z ×X Y )× (Y ×X Y ),

and denote the result by p∗12 F ⊗ p∗23L in K G(Z ×X Y ×X Y ). The projection p13 : Z ×X
Y ×X Y → Z ×X Y is proper, and we obtain the convolution product of F and L denoted

by

F ∗ L = (p13)∗(p∗12 F ⊗ p∗23L) ∈ K G(Z ×X Y ).

A.1.3. Let Y be a smooth G-variety and π : Y → X a proper G-equivariant morphism.

Let X → X̄ and Z → X̄ be G-equivariant morphisms of varieties. Assume Z to be smooth.

Then K G(Y ×X Y ) acts on the left by convolution on K G(Y ×X̄ Z). Indeed, for any F in

K G(Y ×X̄ Z) and L in K G(Y ×X Y ), consider p∗12L � p∗34 F in K G((Y ×X Y )× (Y ×X̄ Z)).
Apply the restriction with supports with respect to the smooth closed embedding
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id× diag× id in the following diagram to p∗12L � p∗34 F :

Y × Y × Z
id× diag× id→ Y × Y × Y × Z

∪ ∪
Y ×X Y ×X̄ Z → (Y ×X Y )× (Y ×X̄ Z)

and denote the result by p∗12L ⊗ p∗34 F in K G(Y ×X Y ×X̄ Z). The projection p13 : Y ×X
Y ×X̄ Z → Y ×X̄ Z is proper, and we obtain the convolution product of L and F denoted

by

L ∗ F = (p13)∗(p∗12L ⊗ p∗34 F) ∈ K G(Y ×X̄ Z).

Note actually that the essential thing we need is the fact that the structure sheaf

OY of the diagonal Y ⊂ Y × Y admits a finite G-equivariant resolution by locally free

OY×Y -modules of finite rank. Then restrict this resolution with respect to the flat

projection p23 : Y × Y × Y × Z → Y × Y . Assume Z → X̄ to be proper; then K G(Z ×X̄ Z)
acts on K G(Y ×X̄ Z) by convolutions on the right, and the actions of K G(Z ×X̄ Z) and

of K G(Y ×X Y ) commute.

Let x be a G-fixed point in X . Assume that the morphism X → X factors through

X → x → X . Let Zx be the fiber of Z → X over x . Moreover, assume that Zx is smooth

and that it satisfies the conditions of Künneth of formula [14, Theorem 5.6.1]. Then, we

have

K G(Y ×X Z) −̃→ K G(Y × Zx ) −̃→ K G(Y )⊗R(G) K G(Zx ). (A 1)

Note that K G(Zx ) is naturally a K G(Z ×X Z)-module, and this is action is R(G)-linear.

The action of K G(Z ×X Z) on K G(Y ×X Z) is R(G)-linear as well. One checks that the

action of K G(Z ×X Z) on the right-hand side of (A 1) comes by functoriality from the

corresponding action on K G(Zx ).

A.2. Generalities on group actions and stacks

Let G and H be two algebraic groups, let φ : G → H be a morphism of groups, and let

X be a G-variety. The induced H -variety H ×G X with respect to φ is the stack quotient

(H × X)/G, where G acts on H × X by

g.(h, x) = (hφ(g)−1, g.x).

Let us show that (H ×G X)/H and X/G are isomorphic as stacks. The space (H ×G X)
can be represented by the groupöıd

H × X G× H × Xoo
t

soo
,

where s(g, h, x) = (h, x) and t (g, h, x) = (hφ(g)−1, gx). The H -action on the objects and

morphisms of this groupöıd is given by

h′.(h, x) = (h′h, x)

h′.(g, h, x) = (g, h′h, x).
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Thus (H ×G X)/H is represented by the groupöıd G given by

H × X H ×G× H × X,oo
t ′
s′oo

where s′(h1, g, h2, x) = (h2, x) and t ′(h1, g, h2, x) = (h1h2φ(g)−1, g.x). It is then easy to

check that the natural morphism from G to the action groupöıd

X G× Xoo oo

is an equivalence.

This kind of argument will be used repeatedly. To avoid writing down the stack

morphisms we will deal with induced varieties as if they were ordinary schemes.

Let φ : G → H be morphism of groups (as before), and let X ′ and Y ′ be two G-varieties

with Y ′ being smooth. Let π ′ : Y ′→ X ′ be a proper morphism of G-varieties. Let

X = H ×G X ′ and Y = H ×G Y ′; X and Y are H -stacks. Then we have the following

isomorphism:

Y ×X Y −̃→ H ×G (Y ′×X ′ Y ′)

as H -varieties. So, we have an isomorphism of stack quotients

(Y ×X Y )/H −̃→ (Y ′×X ′ Y ′)/G,

and we get an isomorphism of algebras,

K H (Y ×X Y ) −̃→ K G(Y ′×X ′ Y ′).

Let Y1 be a G-scheme, and let Y and Ỹ be two H -schemes. Consider the Cartesian

diagram

Y1×Y Ỹ //

��

Y1

��
Ỹ // Y,

where the map Ỹ → Y is H -equivariant and the map f : Y1 → Y is G-equivariant, the

action of G on Y being induced by morphism φ. The group G acts diagonally on the fiber

product Y1×Y Ỹ . This allows us to consider the induced space H ×G (Y1×Y Ỹ ). On the

other hand, we have an H -equivariant map f1 : H ×G Y1 → Y given by f1(h, y1) = h f (y1).

Consider the Cartesian diagram

(H ×G Y1)×Y Ỹ //

��

H ×G Y1

f1

��
Ỹ // Y,

and let H act diagonally on the fiber product (H ×G Y1)×Y Ỹ .
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Lemma A2. There is an H -equivariant isomorphism of stacks

H ×G (Y1×Y Ỹ ) −̃→ (H ×G Y1)×Y Ỹ . (A 3)

Proof. The isomorphism is furnished by the H -equivariant map

H ×G (Y1×Y Ỹ )→(H ×G Y1)×Y Ỹ

(h, (y1, u))→((h, y1), hu).

For g in G, this map is given by

(hφ(g), (g−1 y1, φ(g)−1u))→ ((hg, g−1 y1), hu).

It is an H -equivariant isomorphism and yields the desired isomorphism (A 3).

References

1. J. Adams, L-functoriality for dual pairs, Astérisque 171–172 (1989), 85–129. Orbites
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Boston Inc., Boston, MA, 2008).

39. J.-L. Waldspurger, Démonstration d’une conjecture de dualité de Howe dans le cas
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