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Abstract This paper deals with the geometric local theta correspondence at the Iwahori level for dual
reductive pairs of type II over a non-Archimedean field F of characteristic p # 2 in the framework of the
geometric Langlands program. First we construct and study the geometric version of the invariants of
the Weil representation of the Iwahori-Hecke algebras. In the particular case of (GLj, GL;;) we give a
complete geometric description of the corresponding category. The second part of the paper deals with
geometric local Langlands functoriality at the Iwahori level in a general setting. Given two reductive
connected groups G and H over F, and a morphism G x SLy, — H of Langlands dual groups, we construct
a bimodule over the affine extended Hecke algebras of H and G that should realize the geometric
local Arthur-Langlands functoriality at the Iwahori level. Then, we propose a conjecture describing
the geometric local theta correspondence at the Iwahori level constructed in the first part in terms of
this bimodule, and we prove our conjecture for pairs (GL;, GLy,).

Keywords: local theta correspondence; geometric Langlands program; Langlands functoriality; Hecke

algebras; perverse sheaves; K-theory

2010 Mathematics subject classification: Primary 22E57; 14D24
Secondary 19L47; 32560; 14L30; 20C08

Contents

1 Introduction 2
2 Notation 6
3 Geometric model of the Schwartz space at the Iwahori level 9
4 Hecke functors at the Iwahori level 11
5 Structure of the category Py ©)x; (IT(F)) 16
6 Simple objects of P, (IT(F)) 20

7 Study of Hecke functors for n =1 and m > 1 23


mailto:bfhariri@gmail.com

2 B. Farang-Hariri

8 On the geometric local Langlands functoriality at the Iwahori level 27
8.1 Properties of the stack X . . . .. ... ... Lo oL 30
9 Howe correspondence in terms of K (X) for dual reductive pairs of type II 34
9.1 The proof of Theorem 9.2 . . . . . . .. .. ... ... ... .. ...... 35
Appendix 42
A.1 Generalities on convolution product in K-theory . . . .. ... ... ... 42
A.2 Generalities on group actions and stacks . . . . . ... ..o 43
References 45

1. Introduction

In this paper, our aim is to study the geometric local theta correspondence (also known
as the geometric Howe correspondence) at the Iwahori level for dual reductive pairs of
type II in the framework of the geometric Langlands program. We develop this work in
two directions. The first path consists in geometrizing the classical Howe correspondence
at the Iwahori level by means of perverse sheaves and understanding the underlying
geometry. The second path consists in constructing a bimodule that should realize the
geometric local Arthur-Langlands functoriality at the Iwahori level and studying the
relation between the bimodule realizing the geometric Howe correspondence and the one
realizing the geometric local Arthur-Langlands functoriality at the Iwahori level. Some
of the constructions are done in all generality while some others are only established for
dual reductive pairs of type II.

The basic notions of the Howe correspondence from the classical point of view have
been presented in [35]. Let k =F, be a finite field of characteristic p different from
2, and let F =Kk((¢)) and O = K[[¢]]. All representations are assumed smooth and will
be defined over Q,, where ¢ is a prime number different from p. Let (G, H) be a split
dual reductive pair in some symplectic group Sp(W) over k. Denote by (S, w) the Weil
(metaplectic) representation of the metaplectic group associated to Sp(W); see [22, 35].
We assume that the metaplectic cover admits a section over G(F) and H(F). Then,
the Howe correspondence is a correspondence between some classes of representations of
G(F) and H(F) by means of the restriction of the Weil representation to G(F) x H(F).
This correspondence has been proved in odd characteristic for dual pairs of type I in [39]
and for dual pairs of type II by Howe and Minguez [32].

It is interesting to understand the geometry underlying the Howe correspondence and
establish its analog in the geometric Langlands program. This was initiated by Lafforgue
and Lysenko in [23], where the authors constructed a geometric version of the Weil
representation. The second author then studied the unramified case in [31] from global
and local points of view for dual reductive pairs (Sp,,, SO2,) and (GL,,, GL,). One of
our motivations is to extend the results in [31] to the geometric setting of tamely ramified
case (the Iwahori level).

It is known that the Howe correspondence realizes the Langlands functoriality in
some special cases. In the classical setting the reader may refer to [18, 22, 32, 36],
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and in the geometric setting one can refer to [31]. Adams, in [1], suggested conjectural
relations between Howe correspondence and Langlands functoriality. Let G (respectively,
H) denote the Langlands dual group of G (respectively, of H) over @,. Under some
assumptions, it is expected that there is a morphism G xSL, - H such that, if =
is a smooth irreducible representation of G(F) appearing as a quotient of the Weil
representation S and 7’ is the smooth irreducible representation of H(F) which is the
image of 7 under the Howe correspondence, then the Arthur packet of 7’ is the image of
the Arthur packet of 7 under the above morphism. For more details, we refer the reader
to [3, 22, 34, 36].

Let us describe the basic setting of this paper. Let I (respectively, 1) be a Iwahori
subgroup of G(F) (respectively, H(F)). At the Iwahori level we are interested in the
class of tamely ramified representations. A irreducible smooth representation of (7, V)
of G(F) is called tamely ramified if the space of invariants under the Iwahori subgroup
I is non-zero. The category of tamely ramified representations is the full subcategory
of smooth representations of finite length consisting of those representations whose all
irreducible subquotients are tamely ramified. Denote by #;, the Iwahori-Hecke algebra
of G. According to [12, Theorem 4.10], there exists an equivalence of categories between
the category of tamely ramified smooth representations of G(F) and the category
of finite-dimensional #;;-modules. By using this result, we are going to work with
finite-dimensional Hj;-modules instead of smooth tamely ramified representations of
G(F). Our strategy is to study the bimodule structure of the space of invariants S6*/#
as a module over the tensor product H;; ® H;,, of Iwahori-Hecke algebras in a geometrical
setting. In what follows (except for §8, where we will consider any reductive connected
group), we restrict ourselves to the case of dual reductive pairs of type II. More precisely,
let Lo = k" and Uy =Kk™ with n <m, and let G = GL(Ly) and H = GL(Ujp). Denote
by II(F) the space Uy ® Lo(F) and by S(IT(F)) the Schwartz space of locally constant
functions with compact support on IT(F). This Schwartz space realizes the restriction of
the Weil representation to G(F) x H(F); see [35].

Let us explain in detail the constructions as well as the main results of the
geometrization of the Howe correspondence. Our first step is to define the geometric
counterpoint of the space of invariants S(IT(F))/6*/# and the Hecke actions of Hi,; and
‘Hy, on this space. This is done in §3, where we define the category of I x Iy-equivariant
perverse sheaves Pj,xj,(II(F)) on the ind-pro scheme IT(F) as well as the derived
category Dy, 1, (IT(F)). The construction of these categories uses some limit procedure
(this issue has been taken care of in [31, Appendix B]). Moreover, we define two Hecke
functors geometrizing the bimodule structure of S/6>*/# in §4, which define the action
of the category Dy, (Flg) of Ig-equivariant ¢-adic sheaves on the affine flag variety Fig
(the same for H) on Dy, x 1, (II(F)). These are the generalizations to the Iwahori case of
the Schwartz space and Hecke functors defined in [31] at the unramified level.

Next, we study the action of the Hecke functors on Dy)x i, (II(F)) of H(O) x
Ig-equivariant perverse sheaves on IT(F). This category is acted on by the category
Pr©)(Gry) of H(O)-equivariant perverse sheaves on the affine Grassmannian Gry and
the category Pi,(Flg). In §5, combining our computations and a result of [31] in the
unramified case, we prove the following result.
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Theorem A (Theorem 5.18). The Hecke functor

D;(Grg) = Dpoyxi; (II(F))

yields an isomorphism at the level Grothendieck groups between K(Pi;(Grg))
and K(Py©yxi; (II(F))) commuting with the above actions of K(Pgy)(Gry)) and
K(Pi;(Flg)).

At the unramified level, this isomorphism is actually verified at level of categories
themselves (see [31]), and one would hope that the same would be true at the Iwahori
level.

In §6, we present one of our key results on the simple objects of the category
Py, <1 (IT(F)). In Proposition 6.4, we describe these simple objects in the case n = m,
and then we establish the general case.

Theorem B (Theorem 6.6). Assume that n < m.
Any irreducible object of Pr,xi;(I1(F)) is of the form IC(ITy ) for some w in X¢ x
Sn.m, where Hlu\’,’r 18 the Iy x Ig-orbit indexed by w on T1(F).

In §7, we restrict ourselves to the case of the dual pairs GL; and GL,, for all m > 1.
In this setting, in a series of propositions, we are able to give a complete geometric
description of the module structure of K(Pj;x 1, (IT(F))) under the action of the Hecke
functors. More precisely, we work with the category DPj 1, (IT(F)), which takes into
consideration the action of the multiplicative group G,, by cohomological shift —1. All
our computations are at the level of perverse sheaves, and the symmetry in this case
comes from the action of the perverse sheaves in Py, (Flg) associated with the elements
of length zero in the affine extended Weyl group of H.

Theorem C (Theorem 7.9). Letn =1 andm > 1.

The bimodule K (DPj;x1, (II(F))) is free of rank m over the representation ring of
G X G with basis {IC°, ..., 1C"~"}, and the explicit action of Hy is given by the following
formulas:

Forl <i<m: Hy(Ly,ICH) = ICT @I1C~!.
Forl <i <m: Hy(Ls,, IC") = 1C T @101,
If j #imodm: Hp(Ly, 1C7) = IC/ (Qy[11(1/2) + Q[ —11(—1/2)).

Ifj #imodm: Hy(Ly,, 1C/) = 1C/ [—1](—1/2).

<~ .
For anyi and k in Z: H p(L,,, ICF) = 1CF,

Section 8 is devoted to a purely general construction on the geometric local
Arthur-Langlands functoriality at the Iwahori level. Consider G and H, two split
reductive connected groups over k, and a map G x SL, — H of dual Langlands groups
over @e. To this data we attach a bimodule K (X) over the affine extended Hecke algebras
Hg and Hpy. We propose the following conjecture.
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Conjecture D [15, Conjecture 8.7]. The bimodule over the affine extended Hecke algebras
Hg and Hy realzzmg the local geometric Langlands functoriality at the Iwahori level for
the map o G xGp — H identifies with K(X).

We also describe some additional properties of the bimodule K(X) in §8.8. Let us
explain some motivation for this conjecture, as well as the forthcoming Conjecture F.
In [16], the authors conjecture the existence of some category Cg over the stack of
G-local systems over D* = Spec(k((¢))) endowed with a ‘fiberwise’ action of G(F). Some
conjectures about this category have been formulated in [16]. The construction of this
category is more tractable at the Iwahori level. Denote by N ¢ the nilpotent cone of G,
and by Xfé its Springer resolution. The stack quotient N(v; / G classifies G-local systems
with regular singularities at the origin and unipotent monodromy. These G-local systems
are called tamely ramified. Denote by Cg i1p the category obtained from Cg via the base
change /\/G/CV; — LS (D*), where LSy (D*) stands for the G-local systems on D*. The
authors conjecture [16, Formula 0.20] after isomorphism

K@CE 1) KN /G), (1.1)

G,nilp

where the left-hand side is the Grothendieck group of the category of Ig-invariants in
the category Cg niip and the right-hand side is the Grothendieck group of the category of
coherent sheaves on the stack N, o/ G. Moreover, this isomorphism should be compatible
with the action of the affine extended Hecke algebra. The stack X appearing in Conjecture
E is a refinement of the stack ﬁé/é in our setting.

Let us now explain the link between K(X) and geometric Howe correspondence at
the Iwahori level. Consider a dual (split) reductive pair (G, H) over k with a given
map G xSL, > H. In [23], the authors constructed a category W called the Weil
category equipped with an action of (G x H)(F). This is a geometrization of the
Weil representation. Inspired by the series of conjectures presented in [16], Lafforgue
conjectured that there should exist an equivalence of categories

WSCG XLSH(D*) CH (12)

as categories equipped with an action of (G x H)(F).

Building on Conjectures (1.1) and (1.2), we present a new conjecture at the
level of Grothendieck groups linking the geometric Howe correspondence and local
Arthur-Langlands functoriality at the Iwahori level. Let us first give the context of
this conjecture. Denote by (DW)/6*!H the invariants of the category DW, the latter
being a graded version of W. Denote by DPj, (Flg) the category whose objects are direct
sums of shifted Ig-equivariant perverse sheaves on Flg. This monoidal category takes
into consideration the action of G,, by cohomological shift. The category (DW)¢*1r is
acted on by DPj,(Flg) and DPr,(Flg). The group K(DPi,;(Flg)) ®@g is isomorphic
to the Iwahori-Hecke algebra Hj,. Hence, K (DW)!e*1ry ig a bimodule under the
action of M, and Hj,. According to Iwahori and Matsumoto [19], the Iwahori-Hecke
algebra H;; is isomorphic to the affine extended Hecke algebra Hg after specialization.
Hence, the algebra K ((DW)/6*1H) is a bimodule over Hg and Hp. Moreover, by the
Kazhdan—Lusztig—-Ginzburg isomorphism [14, 21], the affine extended Hecke algebra Hg
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is isomorphic to the G x G,,-equivariant K-theory K Gx G (Z) of the Steinberg variety
Zy of G. This isomorphism is used to define Hg and Hy module structure on K (X).
Note that the usual Kazhdan—Lusztig—Ginzburg isomorphism can be upgraded to the
following isomorphism: )

K(DPy,(Flg)) = K9*Cn(Z).

Recently, Bezrukavnikov proved in [10] an equivalence of categories between Dy, (Flg)
and the category of coherent sheaves on the Steinberg variety of G lifting this isomorphism
to the categorical level.

We may now present our second conjecture.

Conjecture E [15]. The bimodule K(X) is isomorphic to the Grothendieck group of the
category (DW)I6 ¥t ynder the action of the affine extended Hecke algebras Hg and Hy .

If G =GL, and H = GL,,, we can give a more concrete conjecture building on our
construction of the geometric version of the Howe correspondence K (DPy; x 1, (T1(F))).

Conjecture F [15, Conjecture 9.1]. Let G = GL, and H = GL,,.
The bimodule K(X) is isomorphic to the Grothendieck group of the category
K (DPi; %1, (II(F))) under the action of the affine extended Hecke algebras Hg and Hpy .

Section 9 is devoted to the proof of the Conjecture F in a particular case. The result
we obtain is the following.

Theorem G [15, Theorem 9.2]. For any m > 1, Conjecture F is true for the pair
(GLlaGLm)-

This theorem expresses the Howe correspondence in terms of K(X) for pairs
(GL1, GL,,). The idea underlying this Theorem is that the explicit description of the
Howe correspondence in the classical setting obtained by Minguez in [32] should be
upgraded to a finer descrlptlon of the bimodule in terms of the stack X attached to
the map G x SL, — H. This opens an important perspective, as the same description
should also hold for other dual pairs. In particular, it should be interesting to obtain a
similar result for the dual pairs (Span, SOy,,) and provide in this way a conceptually new
approach to the computations done in [4, 5]. Another important perspective is a hope
that the whole derived category Dy, xr, (ITI(F)) could possibly be described in terms of
the derived category of coherent sheaves over the stack X in the same spirit as the recent
work in [2, 10].

2. Notation

In this paper, k is an algebraically closed field of characteristic p > 2 except for §§8 and 9,
where k is assumed to be finite. Let F be the fields of Laurent series with coefficients in
k and let O be its ring of integers. Let £ be a prime number different from p. We will
denote by G a connected reductive group over k and by G(F) the set of its F-points. Fix
a maximal torus T and a Borel subgroup B of G containing T. Throughout the paper
we denote by X the lattice of characters of T and by X the cocharacters lattice of T
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for background and details, see [13]. We denote by R the set of roots and by R the set
of coroots. Denote by ()V(, é, X, R, A) the root datum associated with (G, T, B), where
A denotes the basis of simple roots. Denote by X™ the set of dominant cocharacters
of G. Denote by Ig the Iwahori subgroup of G(F) associated with B. Denote by G the
Langlands dual group of G over Q. All representations are assumed to be smooth and are
considered over Q;. We denote by Rep(é) (respectively, R(é)) the category (respectively,
ring) of smooth representations of G over Qy.

Denote by Wi the finite Weyl group of the root datum (X, R, X,R,A) and by sy the
simple reflection corresponding to the root . We denote by wg the longest element of the
Weyl group Wg. In all our notation, if there is no ambiguity we will omit the subscript G.
Denote by We the affine extended Weyl group, which is the semi-direct product Wg x X,
where Wg acts on X in a natural way. We will assume additionally that the root datum
is irreducible, and the unique highest root will be denoted by . Let Surr = {sq | €
A}U{so}, where sg = t~%0sg,. The subgroup Wss of VT/G generated by Syfr is the affine
Weyl group associated with the root datum. Denote by ¢ the length function defined
on the Coxeter group W,rr which extends to a length function on We. Let QO denote a
subgroup of X generated by coroots. One has W,rr — Wg x Q, and the subgroup Wys¢
is normal in VT/G and admits a complementary subgroup Q = {w € VT/G | £(w) = 0}, the
elements of length zero. Moreover, we have VT/G = Wusr x Q, which we will use as a
description of V~lfg.

For any scheme or stack S locally of finite type over k, we denote by D(S) the bounded
derived category of constructible @@—sheaves over §. Write D : D(S) — D(S) for the
Verdier duality functor. We denote by P(S) the full subcategory of perverse sheaves in
D(S). We will also use a subcategory DP(S) of D(S) defined over any scheme or stack S.
The objects of DP(S) are the objects of @,z P(S)[i], and for K, K’ € P(S) and i, j € Z
the morphisms are

Homp(S)(K, K/) ifi = j;

ifi #j.
Let X be a scheme of finite type over Kk, and let G be a connected algebraic group acting
on X. We denote by Pg(X) the full subcategory of P(X) consisting of G-equivariant
perverse sheaves. The derived category of G-equivariant Q,-sheaves on X is denoted by
Dg(X). For any smooth d-dimensional irreducible locally closed subscheme Z of X, if
i : Z — X is the corresponding immersion, we define the intersection cohomology sheaf
(IC sheaf for short) IC(Z) as the perverse sheaf i1, (Q,)[d].

Let us recall the affine Grassmannian and affine flag variety and some of their
properties; see [8, 33]. We denote by Grg the affine Grassmannian defined as the k-space
quotient G(F)/G(O). If G is the linear algebraic group GL, over k, the k-points of Grg
are naturally identified with the set of lattices in k((r))"; see [6]. The affine Grassmannian

is an ind-scheme of ind-finite type. Given A in X, the G(O)-orbit associated with Wg.A
is G(O) - t*, which we denote by Gré‘;. We have the Cartan decomposition of G(F):

Hom pp(s) (K], K/[J]) =

G(F)= ] GO)*G(0).

reXt
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For any A and p in X7, Grg - Gré if and only if A — u is a sum of positive coroots and

Gr* = I_l Grt.
HSA

For any A in X T, the dimension of Gré is (2p, A), where p = % > scpr @ is the half sum
of positive roots.

Denote by Flg the affine flag variety for G defined as the quotient k-space G(F)/Ig,
which is an ind-scheme of ind-finite type as well. The affine flag variety decomposes as a
disjoint union

Flg = U Igwlg/Ig.
weWe
The closure of each Schubert cell Igwlg /I is a union of Schubert cells, and the closure
relations are given by the Bruhat order:

Iowlg/lg = | J Iew'Is/1c.

w'<w

For any w € VT’G we will denote the Schubert cell Icwlg/Ig by Flg. It is isomorphic to
At@w)

Let R be a k-algebra. A complete periodic flag of lattices inside R((t))" is a flag
LyCcLyCcLiC---

such that each L; is a lattice in R((t))", each quotient L;41/L; is a locally free R-module
of rank 1, and L, =t~ 'Ly for any k in Z.
For 1 <i < n, denote by {eq, ..., e,} a basis of Lo, and set

Aig=|EPr 'Riltlle; | | €D RIltlle;

j=1 j=i+1
For all i in Z, we set Ajyn.r = t_lAi,R. This defines the standard complete lattice flag
A1 RCAoR CARC -

denoted by Ae g in R((¢))". Each point of GL, (R((¢))) gives rise to a flag of lattices inside
R((¢))" by applying it to the standard lattice flag. The Iwahori subgroup I C GL, (K[[#]])
is precisely the stabilizer of the standard lattice flag A4 k. For any k-algebra R, Flgr, (R)
is naturally in bijection with the set of complete periodic lattice flags in R((1))".

Denote by Pgo)(Grg) (respectively, Pp;(Grg)) the category of G(O)-equivariant
(respectively, Ig-equivariant) perverse sheaves on the affine Grassmannian Grg, and
denote by Pj;(Flg) the category of Ig-equivariant perverse sheaves on the affine flag
variety Flg. The category Pg(©)(Grg) is equipped with a geometric convolution functor
denoted by * which preserves perversity and makes Pg)(Grg) into a symmetric
monoidal category; see [33]. We define the extended geometric Satake equivalence in
the following way: 5

DP;(0)(Grg) — Rep(G x Gp);
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for any perverse sheaf K in Pg©)(Grg) and any integer i, this functor sends K[i] to
loc(K)® I®~, where I is the standard representation of G, and loc : Pg)(Grg) —
Rep(é) is the Satake equivalence.

One may define a geometric convolution functor on Dy, (Flg) as well, but this
convolution functor does not preserve perversity; see [2, 17].

Assume temporarily that the ground field k is the finite field F,. We define the
Iwahori-Hecke algebra Hj, to be the space C.(Ig\G(F)/Ig) of locally constant,
Ig-bi-invariant compactly supported Q-valued functions on G(F). We fix a Haar measure
dx on G(F) such that I is of measure 1, and endow Hj, with the convolution functor.
There are two well-known presentations of this algebra by generators and relations.
The first is due to Iwahori and Matsumoto [19], and the second is by Bernstein in
[25, 27]. We will use the second presentation. Moreover, we have the isomorphism
K (DP;;(Flg)) ® Qp — Hi,;-

3. Geometric model of the Schwartz space at the Iwahori level

Let My be a finite-dimensional representation of G over k, and let M = My ®k O. The
definitions of the derived category D(M (F)) of £-adic sheaves on M (F) and the category
P(M(F)) of £-adic perverse sheaves on M(F) are given in [31]. The category D(M(F))
is a geometric analog of the Schwartz space of locally constant functions with compact
support on M(F). We recall their definitions briefly and the use them to define the
Ig-equivariant version of these categories. One can find general details on ind-pro systems
in [31, Appendix B]. These are the generalizations of the construction in [31] in the tamely
ramified case.

For any two integers N,r > 0 with N +r > 0, set My, =t~V M/t" M. Given positive
integers N1 > Nj, r1 > rp, we have the following Cartesian diagram:

M

Np,rq Ni.rq
ip ip (3.1)

where i is the natural closed immersion and p is the projection. Consider the following
functor:

M

D(MN,rz) —> D(MN,rl)
K — p*K[dimrel(p)]. (3.2)
According to [7, Proposition 4.2.5], the functor (3.2) is fully faithful and exact for the

perverse t-structure. The functor i, is fully faithful and exact for the perverse t-structure
as well. This yields a commutative diagram of triangulated categories:

D(M,,, ) —— D(M,,,,)

p*[dimrel(p)]T Tp*[dimrel(p)] (3.3)

D(M,,, ) > DM

Nl,rz)'
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The derived category D(M(F)) is defined as the inductive 2-limit of derived categories
D(My ) as N, r go to infinity. Similarly, P(M(F)) is defined as the inductive 2-limit of
the categories P(Mp ).

Assume that N +r > 0. The subgroup G(O) acts on My, via its finite-dimensional
quotient G(O/tN1"©). Denote by I, the kernel of the map G(Q) — G(O/t*O). The
Iwahori subgroup I acts on My , via its finite-dimensional quotient Ig/In+,. For s > 0,
denote by K the quotient Ig/I;.

Let ry > N +r > 0, we have the projection K,, = Ky4,. This leads to the following
projection between stack quotients,

q: Kr\Mn, = KN+ \Mn,r,
and gives rise to an equivalence of equivariant derived categories,
Dgy,, (My ) — Dk, (My ).

This equivalence is also exact for perverse t-structure. Denote by D;;(My ;) the derived
category of K, -equivariant £-adic sheaves DKr1 (Mpy ) for any r; > N +r.
By taking the stack quotient of Diagram (3.1) by Ky,+,,, we obtain
U
) —— DIG (MN

D, (M )

p*[dimrel(p)]T Tp*[dim rel(p)] (3.4)

No.rq 171

Di;(M, ) > Dy, (My, ).

Ny,ry

where each arrow is fully faithful and exact for the perverse t-structure. Define Dy, (M (F))
as the inductive 2-limit of D;;(M,,) as N,r go to infinity. Similarly, we define the
category Pr,(M(F)). Since the Verdier duality D is compatible with the transition
functors in both diagrams (3.3) and (3.4) we have the Verdier duality self-functors D
on Dy, (M(F)) and D(M(F)).

In order to define an action of the Hecke functors on Dy, (M (F)), let us first define the
equivariant derived category Dy, (M (F) x Flg). Let 51,52 > 0, and set

W, OF) ={g e G(F)[t"M C gM C 1 M}. (3.5)

Then s, GF) CG(F) is closed and stable under left and right multiplication by G(O).
Further, |~ Flg =,  G(F)/Ig is closed in Flg. For s; = s1 and §) > 57, we have the
closed embeddings g, s, F4c — s ,Sé]:Z(;, and the union of g, 5, F€g is the affine flag variety

7 81,8,

Flg. The map sending g to g~ yields an isomorphism between sw‘zG(F) and 61 G(F).

From now on let us assume that My is a faithful representation of G. Then g, 5, F€g C
FLg is a closed subscheme of finite type.

Lemma 3.6. For any si, sz > 0, the action of G(O) on
G(O/ISH_SZ_HO).
Proof. Choose a Borel B’ in GL(My) such that B = G N B’. Denote by

Flg factors through the quotient

51,5

MCM C---CM,=t"'M
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the full flag preserved by B’. The Iwahori subgroup I consists of the elements g of G(F)
preserving M together with the flag (M); above. Hence the map from F{g to Fegr(my)
sending a point gl to the flag (g¢M C gM| C --- C gM,) is a closed immersion. Thus
o5, FlG 1s realized as the closed subscheme in the scheme classifying a lattice M’ such
that "M C M’ C t—*2M together with the full flag

McM{C--CcM,=t""M.
The action of G(O) on the latter scheme factors through G(Q/t1+52+10), O

The action of I on Sl,sz}-lG factors through Kg = Ig/I; for s > s1+sy+1. If s >
max{N +r, sy +s2+1}, the group Ky acts on M, , x 2.7-'1(; diagonally, and we can
consider the equivariant derived category Dg,(M,, x Flg). For s’ > s, one has a
canonical equivalence

51,8

51,82

DKs(MN,r X ‘FIG):)DKS/(MNJ X ]:lG)

Flg) for any s > max{N +

51,52 51,52

Define Dy, (Mny,, % |
r,s1+s2+ 1}

We define the category D;,(M(F) x Flg) as the inductive 2-limit of the category
Dy, (M, , x Swz]:lG) as N, r,s1,52 go to infinity. The subcategory P, (M (F) x Flg) C
D, (M(F) x Flg) of perverse sheaves is defined along the same lines.

L5, T lG) as the category Dg (My r X

152

4. Hecke functors at the Iwahori level

We use the same notation as in the previous section. Denote by i in Xt the character by
which G acts on det(Mj). The connected components of the affine Grassmannian Grg are
indexed by the algebraic fundamental group 71(G) of G; see [8]. For 6 in 71(G), choose A
in X+ whose image in 71 (G) equals 6. Denote by Gr(’g; the connected component of Grg
containing Gré. The affine flag manifold Flg is a fibration over Grg with typical fiber
G/B. Hence the connected components of the affine flag variety Flg are also indexed
by m1(G). For 6 in 71(G), denote by }"ZGG the preimage of Grg in Flg. Set ]—'IQG =
Flg 0, Flg-

Let us now define the Hecke functors (geometrization of the action of the Iwahori-Hecke
algebra H;, on the invariants of the Weil representation under the action of Ig) of
P, (Flg) on Dy;(M(F)), denoted by

51,52

-
H¢ : Dy, (Flg) x Dj,(M(F)) — Dy, (M(F)). (4.1)
Consider the following isomorphism:

a: M(F) x G(F) —> M(F) x G(F)

(v, g) ———= (¢!

v, g).

Any element (a, b) € Ig x Ig acts on the source by (a, b).(v, g) = (av, agh) and acts on
the target (v/, g’) by (a, b).(v/, g') = (b~'v/, ag’b). The map « is I x Ig-equivariant with
respect to these two actions. Hence this yields a morphism of stacks,

M(F)x Flg — (M(F)/Ig) x Flg,
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and enables us to define the following morphism of stack quotients:
acty : Ig\(M(F) x Flg) — (M(F)/1g) x (Ig\Flc),

where the action of Ig on M(F) x Flg is the diagonal one. The following lemma
generalizes a construction done in [31, §4] to the Iwahori case.

Lemma 4.2. There exists an inverse image functor
actz D (M(F)) x Dy (Flg) —> D, (M(F) x Flg)

which preserves perversity and is compatible with the Verdier duality in the following way:
for any K in Dy, (M(F)) and F in Dj;(Flg), we have

]D)(act; K, = act’q‘ (D), D(T)).

Proof. Given N, r,si,s» > 0 with r > s; and s > max{N +r, s; +s2 + 1}, one can define
the following commutative diagram:

t
MN.r X 51,8 G(F) = MN‘FS],)‘*SI
q9G qam

pri act,

MN,r MN,r X 51,52 ‘FlG % KS\MN+Slsr751
acty,s
pr pra2

K\M,, ~—"—— K\(M,, % Flg) K\ (., Flo).

The action map act sends the couple (v, g) to g~'v. The maps pri, pro and pr are

projections. The map gg sends the couple (v, g) to (v, glg). All the vertical arrows are
the projections of the stack quotients for the action of the corresponding group. The group
Ky acts diagonally on My, x|  Flg, and the map act, is equivariant with respect to
this action. This enables us to define the following functor:

temp
Dig(MNs.r—s;) X Dig(, ,, Fl) — Dig(Mnr %  Flc),

51,82

sending (IC, T) to
(act;’SlC) ® pry T[dim(Ky) — ¢ +s1 dim My,

where ¢ equals (0, i) over ]—'l%.

51,8
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Set r; = rp and s > max{s|; +s2, N +r1}. Then we have the diagram

acty s
Ks\(MN,rl X xl,xz]:lG) q_) Ks\(MN%sl,rlfSl)

| |

acty
KN\MN ., %, FlG) ——= K\(Mytsy.ry—s))-
The functors temp and the transition functors in (4.3) are compatible. This gives rise
to a functor

tempy g, 5, * D1, (MN+4s) X Dy, (, ,, Flg) —> D1, (My % Fl),

51,52 51,52

where My =t~V M.
Let Ny > N+s52. Then N < Ny —s2 < N1 +5s1, and we have the closed immersion
My — My, +s5,- Thus we have

Di;(My) x Dy (. , Flg) — Di; (Mn,+s,) X Di;(,, ., FlG)

51,82 S1.52

LtemleMJ2
Di, (My, < , Flg) (4.4)

|

Dig(M(F) x , , Flg),

$1,52

where the first arrow is the extension by zero under the closed immersion My — My, 4.
For any K in D;;(My) and any 7T in Dy, (S 32}"1(;), the image of (K, 7T) under the
composition (4.4) does not depend on N;. So we get a functor

tempy, i, : Dy, (Mn) x Dig( Flg) — D (M(F) x Flg).

51,52 51,52

For any s| > s1, and s, > 52, we have the extension by zero functors

1, G, Flc) = Di, (/ ,]"ZG)

S1.52

which are compatible with our functor tempy ,, so this yields the desired functor:

act’ : Dy (M(F)) x Dy (Flg) % Dy_(M(F) x Flg).

One checks that D(acty (KC, 7)) = acty (D(K), D(T)), and act; preserves perversity. [

For any N, r, s1, 52 greater than zero satisfying the condition s > max{N +r, s; +s2 + 1},
consider the projection

r: K\(Mpy , x Flg) — K\My ,

51,52

which gives us

pr D (M, X Flg) — Dk, (M, ,).

51,82
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These functors are compatible with the transition functors in (4.3) and yield a functor

pri: Dig(M(F) x Flg) —> Dy, (M(F)).

<«
For any K in D (M(F)) and 7 in Dy, (Flg), the Hecke operator Hg(, ) (4.1), is
defined by

HG (T, K) = pract’ (K, T).

Moreover, this functor is compatible with the convolution functor on Dy, (Flg). Namely,
given 71, 72 in Dj;(Flg) and K in Dy, (M(F)), one has naturally

Hg(Ti, Hg(T2, K)) — Hg(Tix T2, K).

One may also consider the category DPj;(Flg) and consider the Hecke functors in the
form

EG : DP;,(Flg) x Dj;(M(F)) —> Dy, (M(F)) (4.5)

<« <«
defined by Hg(Til, K) = Hg(T, K)[i] for i € Z and T € P, (Flg).

Let *: Pp,(Flg)= P1;(Flg) be the covariant equivalence of categories induced by
the map G(F) — G(F), g+ g~ '. We may define the right action ﬁ(; : Dy (Flg) x
Di;(M(F)) — Di;(M(F)) by Hc(T, K) = HG(xT, K).

Example 4.6. Let R, 7 >0, and let *M C V C t~®M be an intermediate lattice stable
under /. Let K € Pj;(Mg,) be a shifted local system on V/t"M C t_RM/t’M. We are
going to explain the above construction explicitly in this case. Let 7 be in Dy, (, ,, Flo)-
Choose ri > r+s;1. If g is a point in ,sz}"l(;, then "M C gV. So we can define the
scheme

S1
(V/I'MY%. Flg

as the scheme classifying pairs (glg, m) such that glg is an element of

S1582
Sm]-"lG and m
is in (gV)/(t""M). For a point (m, g) of this scheme, the element g~'m lies in V/t"M.
Assuming that s > R +r, we get the diagram

~ ty.s
My r <= (VMR Flo =5 KNV /1" M),

where p is the map sending (glg, m) to m. For gG(O) in Gr(‘g;7 the virtual dimension!

of V/gV is (0, 1). The space (V/t’M)f(XI’Sz]-'lg is locally trivial fibration over sl.sz}—lQG
with fiber isomorphic to an affine space of dimension dim(V /t"' M) — (8, /1). Since K is a
shifted local system, the tensor product acty (K ® pryT is a shifted perverse sheaf. Let
K KT be the perverse sheaf act;;’SK ® pryT[dim]. The shift [dim] is the unique integer
for which this complex is perverse, and this shift depends on . Then we have

He(T, K) = p(KRT).

1Recall that, for an O-sublattice W C L(F), its virtual dimension is dim(W) := dim(W/W N L) —dim(L/W N
L).
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Compatibility. Till now we have been working over an algebraic closed field and we have
ignored all the Tate twists. Let us explain how our construction is compatible with the
classical local theta correspondence when the ground field k is IF,.

Assume temporarily that k = F,. Let us explain the relation between this geometrical
convolution and classical convolution action in [32] and [35] at the level of functions.
Given K in D, (M(F)), we can associate with it the function agx in the Schwartz space
S6(M(F)). If K is represented by the ind-pro system Ky, in Dj,(My ), then for m in
=N My(O) one has

ag (m) = Tr(Fry, Ky »m)q />,
where d = dim My, the point m is the image of m in My ,, and Fry is the geometric
Frobenius at m. For large enough r, this is independent of r. The Hecke functors on
Dy, (M(F)) defined above geometrize the action of the Hecke algebras on Sle (M (F))
corresponding to the following left action of G(F) on S(M(F)): for a point g in G(F)
and a function f in S(M(F)) then

g.fm) = |detg|~'2 f(g~"m),
for any m in M(F). To any T in Pj;(Flg) one can associate a function on G(F)/Ig
given by ar(x) = Tr(Fry,Ty) for x in G(F)/Ig. For T; € P;;(Flg), denoting by f; the
corresponding function, we have

Tr(Frg, (Ti*T2)g) =/ fi@) fr(xg)dx,
xeG(F)

where dx is the Haar measure on G(F) such that Ig is of volume 1. Now if F is in

pil
D, (M(F)),let K = Hg(T, F), and denote by f the function associated to F. Then the
function ag associated to K is

ag(m) = / |detx |~/ £ (x "' m)ar (x)dx,
xeG(F)

for any m in M(F).

In the following (except for §8) we will restrict ourselves to the case of dual reductive
pairs of type II. Let Lo =Kk" and Uy =Kk™ with n <m, and let G = GL(Lo) and
H = GL(Up). We put Iy = Uy ® Lo, L = Lo(O), U = Up(O), and IT = I1p(O). For any
O-module of finite rank M and any pair N,r of integers such that N+r > 0, we
set My, =t"NM/t"M. Let Tg (respectively, Ty) be the maximal torus of diagonal
matrices in G (respectively, in H). Let Bg (respectively, By) be the Borel subgroup
of upper-triangular matrices in G (respectively, H). Let I and Iy be the corresponding
Iwahori subgroups. Let Iy denote the constant perverse sheaf on I1. Using the previous
construction we have the well-defined category of I x Ig-equivariant perverse sheaves
on II(F) inside the derived category Dy, xr, (IT(F)) which is the geometrization of the
invariants of the Schwartz space S(IT(F))/6*/#  and two Hecke functors corresponding
to the actions of DPj; (Flg) and DPr, (Flg) on Dy, xr, (IT(F)):

He : DP1,(Flg) x Digxiy (TI(F)) —> Digx1y (T(F))
and -
Hpy : DP1, (Flg) X Digx iy (IN(F)) —> Djgx 1, (IT(F)).
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5. Structure of the category Py)xi;(I1(F))

The purpose of this section is to understand the module structure of the
category Py (©)x 1, (IT(F)) under the action of Py, (Flg) and Py©)(Gry). Let U* denote
the dual of U. A point v in IT1(F) may be seen as a O-linear map v : U* — L(F). For
vin Oy, let Uy, =v(U*)+1t"L. Then U, , is a O-module in L(F). By identifying
Grg with the ind-scheme of lattices in L(F), we may view U, , as a point of the affine
Grassmannian Grg. The Iwahori subgroup I acts on the affine Grassmannian Grg as
well. The Ig-orbits are parameterized by cocharacters A in X. Each orbit is an affine
space. We have the decomposition

G(F)=| | 16"G(0). (5.1)
reX

For any A in X, each G(O)-orbit Gré‘; decomposes into Ig-orbits which are parameterized
by W.A, and the orbit I5t*G(O) is open in Gré. For any A in X, denote by O* the Ig-orbit
through t*G(0O) in Grg. Denote by O™ its closure. The scheme O* is stratified by locally
closed subschemes O, where u is in X. Note that O#* C O* does not necessarily imply
that i < A. Denote by A* the IC-sheaf of O* which is an object of P1; (Grg).

Lemma 5.2. The set of H(O)-orbits on Iy , identifies with the set of lattices R such that
'L C R Ct ™ NL via the map sending v to Uy ,.

Proof. Let M and M’ be two free O-modules of finite type. If f] and f> are two surjections
from M to M’, then there is i in Aut(M) such that fj oh = f,. Let us now consider two
elements vy and v, of Iy , such that Uy, , = U,,,-. Adding to v; a suitable element "I,
we may assume that v; : U* — U, , is surjective for i = 1, 2. Then the previous argument
implies that there exists # in H(O) such that vi o h = vy. Thus, for v; and vy in Iy ,, the
H (O)-orbits through v; and v, coincide if and only if Uy, , = Uy,,r. Since n < m, each
lattice R such that "L c R C t~NL is exactly of the form U, , for some v in Ny, 0O

Let w1 = (1,0, ...,0) be the highest weight of the standard representation of G, and
recall that wq is the longest element of the finite Weyl group Wg.

Lemma 5.3. There is a bijection A — II, , between H(O) x Ig-orbits on Iy, and
elements A in Xg such that for any v in Wg.A

(v,o1) <r and (wo(v),@1) < N. (5.4)
Each orbit Tl , consists of points v such that Uy, lies in Igt*G(O).

Proof. Any lattice R satisfying "L ¢ R C t—NVL is of the form Uy, for some v in Iy ,.
Consider the lattice U, , as a point in Grg. Then by Lemma 5.2 the H(O) x Ig-orbits
on Iy, are exactly the locally closed subschemes (IT ,)rex; in Iy, such that A
satisfies (5.4). O

For any A in X¢, the perverse sheaves IC(I1y ;) in Py ©)yx i, (II(F)) are independent of
the choice of r if (v, @) < r for any v in WgA. The resulting object of Py (o)x i, (IT(F))
will be denoted by IC(IT;). Hence we obtain the following.
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Proposition 5.5. The irreducible objects of Py©yxi; (II(F)) are in bijection with X : the
irreducible object corresponding to a cocharacter A in X¢g is the intersection cohomology
sheaf IC(I1,).

-
Proposition 5.6. For any A in Xg, the complex Hg(A*, Iy) is canonically isomorphic to
IC(IT;).

This proposition implies that any irreducible object of Py )x ., (I1(F)) is obtained by
the action of A* on Iy for some A in Xg. We will give a proof of this proposition after
some preparation. First note that if A is dominant then A* is G(O)-equivariant, and in
this case Proposition 5.6 results from [31, Proposition 5].

-

Let us give a description of the complex H g (A", Iy). Choose two integers N, r satisfying
_—A

N +r > 0 such that, for any v € Wg.A, condition (5.4) is satisfied. Let I1p,xO be the

—a
scheme classifying pairs (v, gG(0)), where gG(O) belongs to O and v is an O-linear
map from U* to gL/t"L. Let

_—A
7o, x0 —> Iy, (5.7)
be the map sending a pair (v, gG(O)) to the composition

U* % gL/t"L— t NL/{"L.

=i —A
This map is proper. The projection p : 1y, xO — O is a vector bundle of rank rnm —
m{\, @,), where @, = (1,...,1). We obtain in this particular case an isomorphism
<« —_ o~
Hg (A, o) = m(Q, KAY), (5:8)

where the complex Q, X A* is normalized to be perverse; i.e.,
QXA = p* A*[dimrel(p)].

As mentioned before, the category Pg0)(Grg) is equipped with a convolution functor.
Consider the following convolution diagram:

Grg x Grg £ G(F) x Grg > G(F) x0) Gre = Grg, (5.9)

where m is the multiplication. Let /| and F, be two G(O)-equivariant perverse sheaves
over Grg; the convolution functor of these two perverse sheaves is by definition F| x F =
mi(F K F,), where the sheaf F| X F, is perverse equipped with an isomorphism

P (FIRF) = ¢*(FiI K F). (5.10)

According to [17, Proposition 6], the category Pj;(Grg) acts on Pg)(Grg) by
convolution, and this convolution functor * preserves perversity. We want to use this
result in order to give a dimension estimate for the objects of Pj;(Grg).

For w in Xg, let B* be the IC-sheaf associated with the G(O)-orbit t*G(O) in Grg.
Then, for any cocharacter A in Xg the convolution functor A* « B* is perverse. For any
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v in Xg, and any point gG(O) in 0", let Y be the fiber of the map m over this point.
The fiber Y identifies with the affine Grassmannian Grg. For 1 in X and § in Xg, let
Y% be the intersection of ¥ with I5t"G(O) X G(O) Grf;.

The restriction of A*xB* to OV is placed in usual degrees smaller than or equal to
—dim OV, and the restriction of A* ®8u|yn,6 is the constant complex sitting in usual
degrees smaller than or equal to —dim O — dim Gr‘SG,

Lemma 5.11. For any n, v in Xg, and any & in Xg, the following inequality holds:
2dim Y"7° — dim 0" — dim Gr < —dim 0".

Proof. Let B%' (respectively, A™') be the constant perverse sheaf on Grg (respectively,
O") extended by zero with adequate perverse shift on Grg. The extension by zero
functor is right exact for the perverse t-structure. Hence B%' (respectively, A™') lies
in non-positive perverse degrees, and so does the convolution functor A™'xB%!. The
s-restriction of AT KB%! to Y is the extension by zero from Y% to ¥ of the constant
complex. Hence this complex lies in degrees 2dim Y% —dim O" — dim Gré +dim OV, and
so we have the desired inequality. O

Proof of Proposition 5.6. Let A be in Xg, and consider the complex m(Q, )
appearing in (5.8). For v in X¢, take an H(O) x Ig-orbit I1, , in Iy ,. If v isin IT, ,, let
Y, be the fiber of the map 7 over v defined in (5.7). The fiber Y, is the scheme classifying
elements gG(O) in Ok such that U, , is a sublattice of gL. If v is in IT, , then Y, is just
a point, and so the map 7 is an isomorphism over the open subscheme IT; ,. On the one
hand this implies directly that IC(IT, ,) appears with multiplicity 1 in the complex of

-
sheaves H(A*, Ip). On the other hand, this gives

dim(T1,, ) = rom —m(X, @,) + dim O,

L=
Let U be the open subscheme of Iy ,xO consisting of pairs (v, gG(O)) such that
gG(0) lies in O* and v : U* — gL/t" L is surjective. The image of U by 7 is contained
in Iy . So, @ induces a surjective proper map

Tl H()’r>~<0 — I, .

For v in I, ,, we stratify ¥, by locally closed subschemes ¥, indexed by cocharacters 7 in
Xg. For any 5, the stratum Y, parameterizes elements gG(Q) in O". The x-restriction of
Q, X A* to Y, lives in usual degrees smaller than or equal to —dim O"7 — rum 4+ m(n, @,),
and the inequality is strict unless n = A. We will show that

2dimY! —dim O" —rnm 4+ m(n, w,) < —dimTI,, (5.12)

and that the inequality is strict unless v = A; this would imply our claim. Since we have
dim(I1, ;) = rnm —m(v, ®,) +dim O, the inequality (5.12) becomes

2dimY! < m(v —n, &) +dim 07 —dim 0". (5.13)
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= — —
Considering the map =, : 1o, xO0 — II, ,, we see that IT,, C IT, ,. A dominant
cocharacter § in Xg is called wvery positive if

§=(by > > b, >0).

It is natural to stratify ¥, by locally closed subschemes Y, ’8, where 6 runs through very
positive cocharacters. For any such §, the stratum Y, 9 consists of elements (v, gG(O))
such that the lattice U, , is in G(O)-position § with respect to the lattice gL. For a
point (v, gG(0)) of Y,?’S, the formula of virtual dimensions dim(L/gL) +dim(gL/ U, ) =
dim(L/U, ) gives
(84+n—v,a,) =0.
Finally, equation (5.13) is equivalent to
2dim Y% < n(8, p) +dim 0" — dim 0"

By using Lemma 5.11 we are reduced to showing that, for any very positive &8, (§, nw, —
2p6) = 0. To prove this inequality, notice that

no, —2p6 = (1,3,5,...,2n—1).

Thus nw, —2p¢ is very positive, and so for any very positive cocharacter § we have
(8, nay —2pG) = 0. This proves the inequality (5.13). Moreover, for any very positive §,
this inequality is strict unless § = 0, which is the case if and only if v = 5. This finishes
the proof. O

Recall that, according to the Satake isomorphism, Py )(Gry) is equivalent to the
category Rep(ﬁ ) of representations of the Langlands dual group H over Q;. The module
structure of Py©)xc(©)(I1(F)) under the action of the category Pp©)(Grg) has been
described in [31, §5]. Namely, let U; (respectively, U,) be the vector subspace of Uy,
generated by the first n basis vectors (respectively, by the last m —n basis vectors)
of Uy. Thus, Uy = U; ® U;. Let P C H be the parabolic subgroup preserving Uj. Let
M = GL(Uy) x GL(U») the standard Levi factor in P, and let the map « : GxGm— H
be the composition

v idx2pGL v v . .
Gx G —5 G x GL(Uy) = M — H. (5.14)

By using the extended Satake equivalence,
gRes" : Py 0)(Gry) — DPg0)(Grg)

for the functor corresponding to the restriction Rep(I:I) — Rep(é X Gp) with respect
to «.
Proposition 5.15 [31, Proposition 4]. The two functors

Pr©)(Gry) — Da©yxco)(I1(F))
given by

<« <«

T— Hu(T,lo) and T — Hg(gRes"(T), Ip)

are isomorphic.
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Proposition 5.16. For any A in Xg and T in Py)(Gryg), we have the following
isomorphism:

Hu (T, IC(M,)) = H (A % gRes* (T), Io).

Proof. Since the actions of P;;(Flg) and Py©)(Gry) on Dy©)xi; T1(F)) commute, we
get from Proposition 5.6 and [31, Proposition 4]

Hy (T, IC(I1,)) = Hyu (T, Hg(A", Ip))
== Ho(AM Hy(T, )
== Ho(A*, Hg(gRes (T), Iy))

= 1?16(./4x *x gRes“ (T), Ip). O

From Proposition 5.6 it also follows that the functor
Di;(Grg) — Dp©yxi; (II(F)) (5.17)

given by A > E G(A, Ip) is exact for the perverse t-structures. It suffices to verify this
for simple objects, and this follows from Proposition 5.6. It is easy to see that neither of
the categories Py, (Grg) or Pyo)xi; (I1(F)) is semi-simple. The functor (5.17) commutes
with the actions of Pj; (Flg) by convolutions on the left. Let Py 0)(Grg) act on Dy, (Grg)
via gRes" composed with the natural action of Dg0)(Grg) by convolutions on the right.
According to Proposition 5.16, it is natural to expect that (5.17) commutes with the
action of Py©y(Gry). From Propositions 5.6 and 5.15 one derives the following.

Theorem 5.18. The functor (5.17) yields an isomorphism at the level of Grothendieck
groups between K(P1;(Grg)) and K(Pyoyxi;(II(F))) commuting with the actions of
K(Py0)(Grn)) and K(Pi;(Flg)).

6. Simple objects of P, (IT(F))

We use the same notation as in the previous section. Our goal is to describe the simple
objects of Pr, xi,(TI(F)). To do so we study the Iy x Ig-orbits on II, , defined in [§5,
Lemma 5.3]. It turns out that it is not necessary to do the study for all cocharacters
A. Indeed, if A = (ay, ..., a,), we will restrict ourselves to the case where all the a; are
strictly smaller than r. This will be sufficient for our purpose. Let

Stab, = {g € I | g(t*L) = t*L}

and
Xy,={vely, | Uy, =t"L+tL}.

Describing Iy x Ig-orbits on IT, , is equivalent to describing Iy x Staby-orbits on X?‘\, -
Assume that n = m.
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Lemma 6.1. The Iy x Stab,-orbits on X?V,r are in bijection with the finite Weyl group
We.

Proof. Let {e1, e2,...,e,} be the standard basis of the vector space Lg, so the Borel
subgroup Bg preserves the standard flag associated with the basis (e;)ig<ign. Let
(uy,u3, ..., uy) be the standard basis of the dual space Ug. Let v be a point in XIAVJ,
and consider the induced map

UM tU* — Uy, /(tUy, +1"L) = t* L/t L, (6.2)
where w, = (1,...,1). The map v is an isomorphism, and it may be considered as an

element of Aut(t*L/t®*t*L). Denote by
---CL_1CLocCcLiC---

the standard complete flag of lattices inside L(F) preserved by the Iwahori group Ig.
For any i in Z, the images of L; Nt*L in t*L/t“T*L define a complete flag which is
preserved by Staby. Thus the image of Stab, in Aut(t*L/t**t*L) is a Borel subgroup
of G but not necessarily the standard one. Hence the Iy x Staby-orbits on the set of
isomorphisms (6.2) are parameterized by the finite Weyl group W¢. By Lemma 6.3 below,
each Iy x Staby-orbit on X)I;/,r is the preimage of an Iy x Staby-orbit on the scheme of
isomorphisms (6.2). Finally one gets that Iy x Stab;,-orbits on X;‘v , are exactly indexed
by Wg. O

By this lemma, the set of Iy x Ig-orbits on Iy , is in bijection by Wg.

Lemma 6.3. Let p, g be two integers such that p < q. Let B be a free O-module of rank
p, and let A be a free O-module of rank q. Let vy, vy : A — B be surjective O-linear
maps such that for i = 1,2 the induced maps v; : A/tA — B/tB coincide. Then there is
h € GL(A)(O) with h =1 mod ¢ such that vpoh = vj.

Proof. Let A; be the kernel of v; for i =1, 2. These are free O-modules of rank g — p.
Choose a direct sum decomposition A = A; & W;, where W; is a free O-module of rank p.
Then there is a unique isomorphism a : W, —> Wj such that W, LN Wi L A coincides
with W, —2, A. The images of A; @k in A ®p k coincide; therefore there exists an
isomorphism of @-modules b : Ay —> A; such that b : A» @ k —> A ®p k is identity.
Then a @ b is the desired map h. O

Let 7 be an element of Wg, and let w = t*7 be the corresponding element in Vng, where
A =(ai,...,a). Denote by Iy, . the I x Ig-orbit on Iy , passing through v given by

v(u;,k) = ta’([)et(i) fori=1,...,n.

The I x Iy-orbits on Iy , are exactly Hlu\},r for w in Vng.

For any w in Wg, denote by 7% the IC sheaf of the Iy x Ig-orbit ITy , indexed by w,
and by 7" the constant perverse sheaf on I} , extended by zero to [Ty ,. As an object of
Py, 515 (TI(F)), it is independent of r, so our notation is unambiguous. We stress that this
notation is only introduced under the assumption that a; < r for all i. As the category
Py, <15 (IT(F)) is obtained by filtering inductive 2-limit. Simple objects of this category
are the image of simple objects of the pieces of the limit.
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Proposition 6.4. Recall that n = m. Any irreducible object of Pry xi, (T1(F)) is of the form
I% for some w in Wg.

Proof. Let A = (ai, ..., ay). An irreducible object of Pj,, i, (IT(F)) is the IC-sheaf of an
I x Ig-orbit Y on IT, , for some integer r and for some cocharacter X satisfying (5.4). In
particular, all the a; are smaller than or equal to r. First we will show that we can restrict
ourselves to the case where all the a; are strictly less than r. Assume that a; = r for some
i. For s > r, consider the projection g : Iy ¢ — Iy . Then the H(O) x Ig-orbit I,
is open in qil(l'l;»yr). The map g : T ; — I, , is not surjective, but the sheaf IC(}) is
non-zero over the locus in ¢! (T, ;) of maps v: U* — t~NL/t" L whose geometric fiber
of the image is of maximal dimension n. Hence the IC sheaf of ) is also an IC sheaf of
some Iy x Ig-orbit on I ;. We are reduced to the case where all the a; are strictly less
than r. Recall that the geometric fiber of an O-module £ is £L®p k.

Next we are going to prove that each Iy x Ig-equivariant local system on H%) ,
is constant. The map X}, , — Isom(U*/tU*, t*L/*** L) given by v — ¥ is an affine
fibration. The group Hom(U*, t**® L /t"L) acts freely and transitively on the fibers of
this map. So we are reduced to showing that any Bg x By-equivariant local system on
any By x Bg-orbit on Uy ® Lg is constant. This is indeed true, because the stabilizer in
B¢ of a point in the double coset BGwBg/Bg for any w in Wg is connected. O]

If A is dominant then the image of Stab; in Aut(t*L/t*T®2L) is the standard Borel
subgroup of G. Thus when w = * with A being dominant we have that [Ty , is an open
subscheme of IT, , and Z% = IC(I1, ,). ’

Assume that n < m.

In this case, the map (6.2) is not an isomorphism but only a surjection. We may consider
the Iy x Stab,-orbits on the set of surjections (6.2). Let S, ,, be the set of pairs (s, Iy),
where I is a subset of n elements of {1,...,m} and s : Iy — {1, ..., n} is a bijection.
Let Wi C W C --- C Wy, = U be a complete flag preserved by By. We denote by W,
the image of W; under the map (6.2). Then Iy = {l <i < m| dim W; > dim W;_;}.

Recall that for A = (ay, ..., a,) we assume that a; < r for all i. From Lemma 6.3 one
deduces that each Iy x Staby-orbit on X?‘\,’r is the preimage of an Iy x Stab,-orbit on the
set of surjections (6.2). Let w = (&, s) be in X X S, m; then the Iy x Ig-orbit passing
through v a point of Ily , is given by

v(ulf) = t%ieg; fori € Ig;
{v(u%‘) =0 for i ¢ I. (6.5)
We denote this orbit by H%,r and its closure by ﬁ%,r. For any w = (A, s) in Xg X Sy m,
denote by Z* the IC sheaf of T . The corresponding object of Dy, x 1, (TT(F)) is well
defined and independent of N, r. Denote by Z%' the extension by zero of the constant
perverse sheaf from I1Y . to Iy ,. The corresponding object of Dy, x; (IT(F)) is well
defined and independent’ of N and r.

Theorem 6.6. Any irreducible object of Pry i (II(F)) is of the form I% for some w in
X6 X Sum-
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Proof. An irreducible object of Py, i, (II(F)) is the IC-sheaf of an Iy x Ig-orbit J on
I, , for some integer r and for some cocharacter A = (ay, ..., a,) satisfying (5.4). As
in the proof of Proposition 6.4, we may assume that all the a; are strictly less than r.
Consider an Iy x Ig-orbit Ty on Ily,, passing through v as defined in (6.5). Let St(v)
be the stabilizer of v in Iy x Ig. We are going to show that St(v) is connected. This will
imply that any Iy x Ig-equivariant local system on Iy x Ig-orbit TTy ., 18 constant.

The stabilizer St(v) of v is a subgroup of Iy x Stab,. Let B, be the i image of Stab, in
Aut(t*L/t*T®" L); then B, is a Borel subgroup of Aut(t*L/t*T®"L). We define two groups
Iy, and Ip g by the exact sequences

1 — Ip; — Staby, — B, — 1,

and
1_>IO,H_>IH_>BH_>1-

Note that Iy is semi-direct product of Ip.z and By. Let Stp(v) be the stabilizer of v
in lo,g x lo,x. By Lemma 6.3, the Ip g X Ip -orbit through v on XN . is the affine space
of surjections f :U* — t*L/t"L such that f =v mod ¢. Thus Sto(v) is connected.
Let v: U*/tU* — t*L/t**®n L be the reduction of v mod ¢. The stabilizer St(v) of v in
By x By is connected. By Lemma 6.3, the reduction map from St (v) to St (v) is surjective.
Using the exact sequence

1 — Stop(v) — St(v) — St(v) — 1,

we obtain that S7(v) is connected. O

7. Study of Hecke functors for n =1 and m > 1

We will assume that n =1 and m > 1 in the entire section, and we will give a complete
description of DPj, i, (IT(F)) under the actions of P, (Flg) et P (Flg). We use the
same notation as in previous section. We will work most of the time over an algebraically
closed field (and ignore the Tate twists).

For 1 <i <m we denote by w; =(1,...,1,0,...,0) the cocharacter of Ty where 1
appears i times. The Iwahori group Iy preserves t U and t* U*. Let Qp be the normal
subgroup in the affine extended Weyl group Wy of elements of length zero. Note that
wn=(1,...,1)isin Qg.

For 1 <i <m, let U =t U. Define U’ for all i € Z by the property that U'™" =
t=n U for all i. Thus,

cU'cv’cUul c

is the standard flag preserved by Iy. For any integer k in Z, we denote by ICK the IC
sheaf of UX® L.

Proposition 7.1. The irreducible objects of Pr,x1;(I1(F)) are exactly the perverse sheaves
ICk, k e Z.

Proof. The assertion follows from Theorem 6.6. O
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We will denote by IC*' the constant perverse sheaf on U¥ ® L — U1 @ L extended by
zero. This is a (non-irreducible) perverse sheaf. Denote by Iy = ICY the constant perverse
sheaf on IT.

Assume temporarily that k is finite. For w € Vng, denote by j, the inclusion of
Fl§ in Flg, and let Ly, = FueQe[(w)](£(w)/2), the IC sheaf of Flg. We write Ly =
FuorQelew)]1(8(w)/2) and Lyy = jusxQy[€(w)](€(w)/2) for the standard and costandard
objects. As j, is an affine map, both L, and L., are perverse sheaves. They satisfy
D(Ly«) = Ly, where D) denotes the Verdier duality. To each G in P;;(Flg) we attach a
function [G] : G(F)/Ig — Q, given by for x in G(F)/Ig [Gl(x) = Tr(Fry, Gy), where

Fry is the geometric Frobenius at x. The function [G] is an element of #;;. In

particular, [Lyi] = (=1 gy ’T,y and [Lued = (=1 @q,/* T, where g, = ™.

Here T, denotes the characteristic function of the double coset Iqwlg.

Let us describe H g (A*, Iy), for any cocharacter A of H. Recall that A” is the IC sheaf
of the Iy-orbit O* through t*H(O) in Gry. Let A = (a; ..., ay), and choose N, r such

that —N < a; <r for all i. Let Ilp, >~<5)L be the scheme classifying pairs (v, hH(QO)),
where hH(O) is a point in 0" and v is a O-linear map L* — hU/t"U. Let

~—)
w0y, xO0O —> Iy,

be the map sending (v, hH(O)) to the composition L* LN hUu/t"'U — t=NU/t"U. By
definition, we have

Hy (A, Ip) == m(@ B AY),

where Q, X A% is normalized to be perverse. Denote by py the projection of Flg — Gry.
Note that for any T in Pz, (Flg) we have

Hu (T, Io) = Hy(p(T). Io).

For 1 <i < m, let s; be the simple reflection (permutation) (i,i + 1) in Wg.
Proposition 7.2. For 1 <i < m, we have

Hp(Ly;, o) = I @R (P!, Q[11 = o ® Q11 @ Qe[ —1D).
Similarly,
HH(LSI‘! 5 IO) :) IO[_l]

Proof. One has pyi(Ls;) — RI'(P', Q,)[1], and the assertion follows. O

Assume that m > 1, and let s, = t)‘r, where A = (—1,0,...,0,1) and T = (1, m) is the
reflection corresponding to the highest root. This is the unique affine simple reflection in
Wy
Proposition 7.3. If m > 1, we have the following canonical isomorphisms:

<« <«
Hy(Ly,, Io) = 1IC'@1C™" and Hpy(Ly,, Ip) = ICHM@1C™!
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Proof. The composition
]:_lem —> ]:lH ﬁ) GVH

is a closed immersion, and so pyi(Ls, ) — A*. Thus we have
<~ = 5
Hy(Ly,, Ip) — Hy (A", Ip).
In this case, the scheme EA classifies lattices U’ such that
.cUulcU cU' c---
and dim(U’/U~") = 1. Let N = r = 1; then the image of the projection
V2 l_[(),1>~<5)L —> Hl,l

is contained in L ® (U'/tU). Let v be a map from L* to U'/tU in the image of x. If
v factors through U~!/tU, then the fiber of 7 over the point v is P'; otherwise it is a
point. The first claim follows, and the second is analogous. O

In a similar way one gets the following.

Proposition 7.4. For 1 <i < m, we have
p i~ yitl i-1 p i~ 1t i1
Hy(Ls, 1CH) —= IC'T @IC and Hp(Lg, IC') —IC"" @ IC' ™.

Proof. The proof follows from Lemmas 7.2 and 7.3. U

The symmetry in our situation is due to the fact that Qp acts freely and transitively
on the set of irreducible objects of Py, (IT(F)).

For 1 <i < m, there is a unique permutation o; in Wy such that t=“o; is of length
zero. Indeed, o; is the permutation

(1,2, o om—im—i+1,....m)—> G+ 1,i42,....m1,....0).

For 1 <i < m, we put w; =t “o;. We extend this definition as follows: for any i € Z,
let w; in Qg be the unique element such that w; U” = U"* for any r. For 1 <i <m —1,
we have w]s,-wl_1 = s;i4+1 and w1smwl_1 = s1. Thus, the affine Weyl group of H acts on
the set {s1, ..., sm} by conjugation.

Proposition 7.5. (1) For any i and k in Z, one has a canonical isomorphism
P ky ~ ki
Hp(Ly,, 1CY) = 1C**.
(2) For 1 <i<m, je€Z withj#i modm, one has

H (L, IC) 107 ® @[1] @ Qe[ 1)

Propositions 7.4 and 7.5 describe completely the action of Py, (Fly) on the simple
objects ICK, k € Z. Now we are going to define the action of the center of P, (Flg)
on ICK.
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Let o : G x Gmn — H be given by (5.14). Denote by Res? : Rep(I:I) — Rep(é x Gy
the corresponding geometric restriction functor. For any G (O)-equivariant perverse sheaf
T on Gryg, T is naturally isomorphic to pgi(Z(T)).

Denote by s the standard representation of G,, and by g the standard representation
of G. The category Rep(é x Gm) acts on DPy; xp, (TI(F)) as follows:

<~ R —
Hg(s/,1CH = 1C*(1. 76)
<« . , :
Hg(g!, 1ChH = 1c*—m.

It follows that the representation ring R(é x Gm) acts on K(DPj;xy, (IT1(F))), which
becomes in this way a free R(G x G )-module of rank m with basis {IC?, ..., 1C"~!}.

Theorem 7.7. The respective actions of the center of Pr,(Flg) and the center of
P, (Flg) on the category DPy;x 1, (II(F)) are compatible. More precisely, the center of
P, (Flg) acts via the geometric restriction functor Res® : Rep(I-VI) — Rep(é x G,,) on
the irreducible objects IC* for any integer k.

Proof. Let us recall that there is a central functor
Z: Pyoy(Gry) — P, (Flg)
constructed by Gaitsgory in [17, Theorem 1]. For any S in Py©)(Grg), we have
Hy(Z2(8),1C% = Hy(pmi(2(S5)),1C%) = Hy (S, 1C% == Hg(Res? (S), ICY), (7.8)
where the last isomorphism is [31, Proposition 5]. Recall that for any k in Z we have
H 1 (Lyy,, IC% = ICk. For S in Py(o)(Gru), Z(S) is central, so
Hy(Z(S),ICY = Hy(Ly,, Hy(2(S),1C%) = Hg(Res? (S), ICH),

where the last isomorphism is from (7.8). The assertion follows. O]

Assume that k is a finite field ;. Let us rewrite all useful formulas obtained in
Propositions 7.2, 7.3 and 7.5, taking into consideration the Tate twists. These formulas
will be used in §9.

Theorem 7.9. The bimodule K (DPi;x 1, (II(F))) is free of rank m over R(é X Gm) with
basis {ICY, ..., IC"1} and the explicit action of Hy is given by the following formulas:

Forl <i<m: Hy(Ly,ICH) = ICT @I1C~!.
Forl <i <m: Hy(Ls,, IC") =S 1C T @101,
If j #imodm: Hpy (L, 1C7) = I1C/ (@Q,[11(1/2) + Qg [—11(—1/2)). (7.10)

If j #imodm: Hy(Ly,, 1C/) = 1C/ [-1](—1/2).

< .
For anyi and k in Z: H g (L,,, ICF) = 1CF*,
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More generally, for a < b, denote by IC*?* the sheaf Q,[b — a] defined on (U?/U%) — {0}
extended by zero to U?/U“. This is not perverse in general. In Grothendieck group
K (DPp, x 1, (IT(F))) we have

IC%P' = 1C —1C?[b — a].

Let w; = (1,...,1,0,...,0), where 1 appears i times and 0 appears m —i times.
Proposition 7.11. We have a canonical isomorphism in K (DPy, x1;(I1(F))):

<~ .
H g (Lyiy, 1ICY) =S 1C™ O i — (wr, 2p)1+1C™" [m — i — (i, 2pm)]-

Proof. First note that - -
H (Lo, 1C0) = H p (A“", 1CY).

Let N=r=1. The scheme O¢ classifies lattices tU° c U' c UY such that
dim(U’/tU°%) =m —i and (U'/tU%) N (U™ /tU®) = 0. Therefore the orbit O® is an
affine space of dimension £(t“) = (w;,2pm) = (m —i)i. Let Tlp; x 0% be the scheme
classifying pairs (v, U’), where U’ is in O® and v is a map from L* to U’/tU°. Consider
the map

T H0’1>~<0wi —> Ip

sending (v, U’) to v. Then we have

-
H (A% 1C%) = 7, IC(Mp,1 X 0),

and the assertion follows from the remark above on the elements IC%?:!. O

8. On the geometric local Langlands functoriality at the Iwahori level

For basic notions in equivariant K-theory, we refer to [14, Chapter 5]. Some of
the constructions we will use are recalled in Appendix. Let us just recall the
Kazhdan—-Lusztig-Ginzburg isomorphism and fix some additional notation.

Let k be the finite field F. Let G be a connected reductive group over k, and denote by
G its Langlands dual group over Q. Assume additionally that (G, G]is simply connected.
Let v be an indeterminate. Let (W, S) be the Coxeter group associated with the root
datum defined on G, where W is the finite Weyl group and S the set of simple reflections.
The finite Hecke algebra Hyy is free Z[v™!, v]-algebra with basis {T},, w € W} such that
the following rules hold.

(1) (T;+ D)(Ty —v) =0if s € S is a simple reflection.
(2) Ty.Ty = Tyy if L(yw) = £(y) +£(w).

The group algebra Z[X] is isomorphic to R(YV")7 the representation ring of the dual torus
to T. We will write * for the element of R(T) corresponding to the coweight A in X.
The affine extended Hecke algebra associated with G was introduced by Bernstein [9] (it
first appeared in [26]) and is isomorphic to the so-called Iwahori-Hecke algebra of a split
p-adic group with connected center. The latter was introduced in [19], and it reflects
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the structure of the space C.(Ig\G(F)/Ig) of locally constant compactly supported
Qy-valued functions on G(F) which are bi-invariant under the action of /. The extended
affine Hecke algebra Hyg is a free Z[v, v™']-module with basis {¢*T,, |w € W, A € X}, such
that the following hold.

(1) The {Ty} span a subalgebra of Hg isomorphic to Hyy.
(2) The elements {e¢*} span a Z[v, v~ !]-subalgebra of H¢ isomorphic to R(D)[v~L, v].
(3) For any sy € S with (A, &) =0, Ty e* = e Ty,.
(4) For any sy € S with (A, @) =1, Tsaesa()‘) T,, = ve’.
Properties (3) and (4) together are equivalent to the following useful formula:
o — Sal®)

Tsaes‘*(}‘) —ekTsa =1-v)———
1—e™

o

, (8.1)

where « is a simple coroot, s, the corresponding simple reflection, and A € X. Properties
(1) and (2) give us two canonical embeddings of algebras:

R(T) v, v] = Hg and Hy — Hg.
The multiplication in Hg gives rise to a Z[v™!, v]-module isomorphism,

He ~ R(D)[v™", v] @1 4 Hw.

v

This is a v-analog of the Z-module isomorphism [14, 7.1.8],
ZIWg] ~ R(T) ®z ZIWg].

Let g be the Lie algebra of G, let B be the variety of Borel subalgebras in g, and let
N be the nilpotent cone in g. The Springer resolution Ny of N is given by
N = {(x,b) € N x Bg | x € b}.
Let u: N e N, & be the Springer map. Let s be the standard coordinate on Gn. We let
G act on ébe requiring that s sends an element x to s~2x. We also define an action of
G x Gy on N by the formula

1

(g,8).(x,b) = (s2gxg~ ', gbg™ .

The map u is G x Gm-equivariant. The Steinberg variety is defined by
Zg =Ng xn, N ={(x,6,6) € Ng x Bs x B | x € b b').

The extended affine Hecke algebra Hg can be considered as a Z[s, s*]]—algebra, where
v = s2. Viewing Z[s, s~!] as the representation ring of G,,, one has the following result
due to Kazhdan, Lusztig, and Ginzburg [14, Theorem 7.2.5]: there is an isomorphism of
natural Z[s, s~ !]-algebras )

K&Cnm(Z:) = Hg. (8.2)

Let us explain briefly what we are going to do. Assume to be given two connected
reductive groups G, H and a homomorphism G x SL, — H, where G (respectively, H)
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denotes the Langlands dual group of G over Q, (respectively, of H). We still assume
that the respective derived groups of G and H are simply connected. We construct a
bimodule over the affine extended Hecke algebras Hg and Hpy realizing the local geometric
Arthur—Langlands functoriality at the Iwahori level for this homomorphism. We propose
a definition of this explicit kernel at this level of generality given in Conjecture 8.7. It is
based to a large extent on the Kazhdan—Lusztig—Ginzburg isomorphism (8.2).

We fix a maximal torus T (respectively, Ty) in G (respectively, H) and a Borel
subgroup B¢ (respectively, By) in G (respectively, H) containing T (respectively, Tg).
Assume that we are given a morphism

o:éxSL2—>1—V],

and let & : SLy, — H be its second component and 7 : G — H be its first component. Let
o : G,, — SL, be the standard maximal torus sending an element x to diag(x, x~!). Let
0 : G x G, — H be the restriction of the above homomorphism via id x a:
G X G 2% & xSLy 25 A (8.3)
For any element g in G we will often denote its image n(g) in H by the same letter g
as well as for the linearized morphisms between the corresponding Lie algebras. Denote
by
0:6GxGy — HxGy

the morphism whose first component is o and whose second component is the second
projection prj : G x G —> Gu. The representation ring R(G x Gy,) is isomorphic to
R(G)[s, s~!]. Note that (at least for pairs (SO, Sp,y,) and (GL,, GL,,)), according
o [31], the local Langlands functoriality at the unramified level sends the unramified
representation with Langlands parameter y in G to the unramified representation with
Langlands parameter o (y, ¢'/?) of H. This is realized by the restriction homomorphism
Res? : Rep(I-VI) — Rep(é X Gy) induced by o.

On the one hand, it is understood that the standard representation s of Gy, corresponds
to the cohomological shift —1 in order to have the compatibility with [31]. On the other
hand, while specializing s, we should think of s as ¢'/? to make things compatible with
the theory of automorphic forms.

Let e denote the standard nilpotent element of Lie(SLy)

(01
e={p0)
If d& : Lie(SLy) — Lie(I:I) is the linearized morphism associated to &, we denote d&(e)

by x. As o is a group morphism, for any z in g, [dn(z), x] = 0. Hence, if z is nilpotent,
so is dn(z) +x.

Lemma 8.4. The map f from Ng to Ny sending any element z in Ng to z+x is a
o -equivariant map. It defines a morphism of stack quotients

TN/ (G X Gr) —> Ny /(H x Gy). (8.5)
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Proof. We have the following equality in Lie(SL,):
ses™! = s2e. (8.6)
This implies that s=2&(s)x&(s)~! = x. For (g,s) in G x Gm, let (h,s) =0(g,s) =
(g£(s), 5). Then for any z in N
s_zgzg_1 +x = s‘zh(z +x)h_1,

which implies that f is G-equivariant and the morphism of stack quotients f is well
defined. 0

The Springer map N g N, ;18 (H x Gm)-equivariant. By using this and Lemma 8.4
we obtain the following diagram:

X = N/ (G x Gm)) X iy N/ (H X Gin) ——> N /(G x Gim)

Ny /(H x G) Ny /(H x G),

where the bottom horizontal map is induced from the Springer map for H and the vertical
right arrow is the composition of the G x Gy-equivariant Springer map for G with the
map f defined in Lemma 8.4. Note that in the left top corner of the diagram we took the
fiber product in the sense of stacks (see [24, §2.2.2]); we denoted it by X'. The K-theory

K (X) of X is naturally a module over the associative algebras K GxGm (./\N/ G XN N &) and

K1xGnm (ﬁﬁ XN /\~/'g). The action is by convolution (see Section A.1 Appendix). Thanks
to (8.2), these two algebras may be identified with the extended affine Hecke algebras
Hg and Hpy respectively. We may now state the conjecture.

Conjecture 8.7. The bimodule over the affine extended Hecke algebras KG*Cm (Zg) and
KH*Gm (Z ) realizing the local geometric Langlands functoriality at the Iwahori level for
the map o : GxGm — H identifies with K (X).

Note that, if G = H and the map & is trivial, then X" equals Zx and K(X) identifies
with the extended affine Hecke algebra Hg for G. Thus K (X)) is naturally a free module
of rank 1 over both algebras Hy and Hg.

8.1. Properties of the stack X
Consider the induced variety
N = (H % Gw) X6, Ng
with respect to @ (see Appendix for the exact definition of the induced variety). Similarly
consider the induced variety

./’\7(“;,}} = (I-} X Gm) XéxGmJ’\V/’é‘
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Proposition 8.8. There exists a natural isomorphism of stacks
X = Wy o<, Ny /(H % Gry),
and so an isomorphism of K-groups
K(X) = KTCn (N goxar, N,

Proof. Since the map f defined in Lemma 8.4 is o-equivariant, it induces an H x
Gm-equivariant map:

f1i(HxGr) xg 6 Ng — N (8.9)
The map fi in (8.9) induces a map from /Vé’ g to N ;> and we can consider the fiber
product /\NfGH XN J\N/H Note that j\N/G’ﬁ/(I-VI X Gy,) is isomorphic to the stack quotient
N G/ (G x Gm); see Appendix A.2. It follows that X identifies with the stack quotient

of /\/G XN N by the action of H x Gy thanks to the following general fact: if
o X—Z and Y Y — Z are equivariant morphisms of G-schemes, then the fiber
product X/G xz,GY/G in the category of stacks identifies with the quotient stack
XxzY)/G. O

Tv‘he action of K %G (/\N/ﬁ XN f\v/'g) and KG*Gn (/\Nfé XN, Né) by convolution on
KMGn(Ng i3 x v, Nyp) s defined in §§A.1.2 and A.2 of Appendix.
If the map o is an inclusion of G in H, the natural map
H>< ./\/ — (HXGm) X G %Gy Nﬁ’é =./\/é’ﬁ

is an isomorphism. We can identify Né ;; With the variety of pairs
(hG € H/G,v e Ny)

satisfying h~'vh € x+Ng via the map sending any element of (h,z) of H x Ng to
(hé, v = h(z+x)h~1). The latter map makes sense because G centralizes x. Thus the
map f1 (8.9) becomes the projection sending any element (hG, v) of N(} 5 to v. In this

case the left H x Gm-action on N(v; 5 is such that, for any (h1,s) in H x Gm and any
(hG,v) in ./\/'éﬁ,
(h1,$).(hG, v) = (h1h&(s) " G, s 2hivhh).

Proposition 8.10. There is a natural isomorphism
K(X) =3 KOO (W o, Ny,
and the R(H X Gy )-module structure on the right-hand side is defined by the functor
Res R(H X Gym) — R(G X Gm).
Proof. The scheme N(v; XN J\fﬁ classifies couples ((z, by), b), where (z, by) lies in Xfé

and b is Borel subalgebra in Lie(H) containing z +x. We define an action of G X Gm on
Neg XN N as follows: for any (g,s) in G x Gy and any ((z, by, b) in N XN Ny,

(g,5).((z, b1), b) = (s2gzg ™", gbig™", g&()bE(s) '),
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By Lemma A 2 in Appendix we have an H x Gm-equivariant isomorphism,
(I-} X Gm) X %G (./\/é XNH./\/'g) :>Né’g XNgNI:I‘
Combining this with Proposition 8.8, we get the desired isomorphism. O

In the rest of this section we will restrict ourselves to the case of G = GL, and
H = GL,,, and we will describe some additional properties of the bimodule K (X), namely
a filtration and a grading on K (X), where the graded parts will just be some equivariant
K-theory of Springer fibers. We will always use the same notation for GL, and its
Langlands dual over @,. In this setting we choose the morphism 7 to be the canonical
inclusion of GL, into GL,,. The map o is obtained by the composition

id
GL, x Gy — GL, x SLy 2§ GL, x GL,,_, —> GL,,.

where the last arrow is the inclusion of the standard Levi subgroup associated to
the partition (n, m —n) of m, and & corresponds to the principal unipotent orbit as

in [3]. Then the restriction of the map & to Gy, is the cocharacter (0,...,0,m —n—
I,m—n—3,...,1+n—m). Let Uy = K" be the standard representation of GL,,, and let
{ui, ..., uy} be the standard basis of Uy. The element x = d&(e) is a nilpotent element of

Lie(GL,,) such that x(u#;) =0 for 1 <i < n+1 and that x(u;4+1) = u; forn+1<i < m.
Let G, = GL,,—,, and let By be the unique Borel subgroup in G, such that x lies in
Lie(B»).

Let Zg,(x) be the stabilizer of x in G». It acts naturally on ./\N/'é XN ./\71_1 for any y in
Zg,(x) and any (z, by, b) in f\?@ XN ./\N/'ﬁ7

¥.(z,b1,b) = (z, by, yby ™).
For any s in Gy, the element £(s) clearly normalizes Zg,(x) and thg semi—dillect product
ZG,(x) x Gy, is a subgroup of G,. The group Zg, (x) x Gy, acts on NG XN J\/ﬁ, and this

action commutes with the G-action.

Theorem 8.11. There ezists a G X Gy, -invariant filtration
—_ 50 1 — N \ ~
W=F CF C- CF =Ngxn, Ny

such that, for 0 <i <r, each KG*Gn (FY) is a submodule over both affine extended
Hevcke algebras KG*Gm (J\N/G XN, /\N/G) and KH*Gm (/\7,;, XN f\?ﬁ). Moreover, the spaces
KC*Gn(Fy for 0 <i <r define a filtration on K (X).
Proof. For any G-orbit O on NG, we denote by Yg the preimage of O in ./\N/'é XN J\NfH
under the projection

Ng xn, Ng = N
sending (z, by, b) to z. We refer the reader to [14, §3.2] for details on nilpotent orbits and
stratification of the nilpotent cone ./\/é into G-conjugacy classes and the stratification

of the Steinberg variety of G. The orbits Yp form a G x Gm-invariant stratification of
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N XN s /\va, which is also Zg, (x)-invariant. The G-orbit O is given by a partition 6 =
G H H 2
(ny=ny>--->2n, > 1) of n. Let My denote the standard Levi subgroup corresponding
to this partition, namely
My — GL,, x --- X GL,,.

We denote by zp the standard upper-triangular regular nilpotent element in Lie(Mp); zo
lies in the orbit Q. Let Zg be the stabilizer of zg in G x Gy; Zg is connected. Denote by
B , the preimage of zg under the~Springer map Ng — Ng. Let Bj; 4 be the preimage
of zg + x under the Springer map N [ e N ;- We have an isomorphism

((v; x Gm) Xz, (BGQ X Bl-}ﬁ) = Yo

sending (g, s, by, b) to (s_zgzgg_l, gblg_l, gé(s)bé(s)_lg_l). Hence we have an
isomorphism of groups
KO*Cn(Yg) =5 K% (B, x By ). (8.12)

According to [37], the scheme BG o and the scheme B 7.0 respectively admit a finite
paving by affine spaces stable under the action of Zy. Hence (8.12) is a free R(Zy)-module
of finite type.

We enumerate the nilpotent orbits Oy, Oy, ..., O, in N, G in such an order that

dim(0;) < dim(Qy) < --- < dim(0,).
fF = Uigj O;, then ol is closed in Né, and we have a filtration
B=F CF C---CF =Ng.
Let FJ be the preimage of F in Nfé XN X/H We get a G x Gy-invariant filtration
p=F'CcF' C .- CF =Ngxn, Ny.

We can refine the filtration F in such way that the refined filtration is G x Gy-stable
and the corresponding strata of the stack quotient of (N G XN N, 1)/ (G x Gry) satisfy
the assumptions of Lemma 8.13. Then, by using this lemma, we see that for each i the
sequence

0—> KGXG’“‘(F"_I) — KOCm(ply 5 KGOCn(yg) — 0
is exact and for 0 < , K GXG"“(F ") define a filtration on K (X). Moreover, for each i,
K GXG"‘(F ) is a submodule over both extended affine Hecke algebras K GxGm (N XN
Ng) and KH<Cn (N g xpr, Nip). O

The above proof relies on the following lemma, whose proof will now be given.

Lemma 8.13 (Cellular fibration). Let us consider the following general situation: k is
an algebraically closed field of arbitrary characteristic and X is a k-stack of finite type
equipped with a filtration

W=F'CcF'c...cF =X
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by closed substacks of X. Assume that for 1 <i <r there exists an affine space E' and
a connected linear algebraic group P’ such that

Fi— Fi-' =S Ei/p!,
where E' /P! is the stack quotient. Then the natural sequence
0— K(F™" — K(F') — K(E'/P") — 0
is exact and K (F") is a free Z-module.

Proof. Let U’ be the unipotent radical of P/, and let G' = P!/U" be the reductive
quotient. Choose a section of the natural projection from G to P'; it yields a map from
E'/G' to E'/P' inducing an isomorphism (combined with Thom’s isomorphism)

K(E'/P") = K(E'/G') = K% (Spec(k)) = R(G'),

where R(G') denotes the representations ring of G (which is a free Z-module). One has
an exact sequence

Ki(E' /P 5 K(FI™Y — K(E'/P)) —> 0.
Let us show that the map & vanishes. By [14, 5.2.18], we have that
KP'(E) = K9 (EY),
and by Thom’s isomorphism for higher K-theory [14, 5.4.17] we obtain that
K (E") = KO (Spec(k)).

Now, by [38, Corollary 6.12], K¢ (Spec(k)) is isomorphic to k* ®z S, where S is a free
abelian group generated by the irreducible representations of G'. By induction on i we
may assume that K'(F'~1) is a free Z-module. To finish the proof, note that, for any free
Z-module S, one has Homy (k*, §) = 0. O

9. Howe correspondence in terms of K(X) for dual reductive pairs of type 11

Let G=GL, and H = GL,, with n < m. We have presented some motivation for
the forthcoming conjecture in the introduction. Consider the Grothendieck group of
the geometric bimodule DPj, i, (IT(F)). The group K(DPj,x;(I1(F))) is naturally a
module over K (DPj,(Fl;)). This K-group K (DPj, (.7-"11H))®@@ is isomorphic to the
Iwahori-Hecke algebra Hj, . According to [19], the Iwahori-Hecke algebra H;,, identifies
with Hpy ®gz, -1 Q¢ for the map Z[s, s~!'] — Q; sending s to q%. This isomorphism is
naturally upgraded to the isomorphism

K(DP,(Flp) ® Q¢ = Hy ®gp -1, Q¢

such that the multiplication by s in Hpg corresponds to the cohomological shift by
—1in K(DPj, (Fly)). Hence under these isomorphisms and Kazhdan-Lusztig-Ginzburg
isomorphism, K (X) and K (DPy,, x 1, (I1(F))) are bimodules over the affine extended Hecke
algebras Hg and Hpy. Let us enounce the following conjecture.
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Conjecture 9.1. The bimodules K(X) and K(DPj, «1, (I1(F))) are isomorphic under the
action of extended affine Hecke algebras Hy and Hg.

The principal result of this paper is the following theorem describing geometric Howe
correspondence in terms of geometric Langlands functoriality for all dual reductive pairs
(GL1, GL,,).

Theorem 9.2. Conjecture 9.1 is true for (GL1, GLy,) for any m.

9.1. The proof of Theorem 9.2

The rest of the paper is devoted to the proof of Theorem 9.2. Let n =1 and m > 1,
and let G = GL; and H = GL,,, where we consider them as Langlands dual groups. The
map G x Gm — H is the composition

éxGm—> G xSL, —> éxGLm,l — H,
where the latter map is the inclusion of the standard Levi subgroup GL; x GL,,_; in
H and £ SL2 — GL,,— corresponds to the principal unipotent orbit. In partlcular the
inclusion G in H is the coweight (1,0, ...,0) of the standard maximal torus of H. The
restriction of £ to the maximal torus Gy, of SL; is the coweight (0,m —2,m —4,...,2—m)
of H. The element x = d&(e) in N 77 is the subregular nilpotent element given by x(u;) =
x(u2) =0 and x(uj41) = u; for all 2 <i < m.

Proposition 9.3. The bimodule K(X) identifies with the Springer fiber By . of the
Springer map ./\~/H — ./\/'g over the point x. ’

Proof. In this case we have '/\76, = H/G in such way that the map fi: G 5=
I-VI/é —>J\/ﬁ defined in (8.9) sends hG to hxh~!. The element s in G acts on
the left-hand side on f\V/GH by sending the right coset hG to hé(s)_lé. The variety
N, G XN N j; identifies with the variety of pairs (hG, b) such that b is a Borel subalgebra

in H and hxh~! lies in b. Any element (hq, s) in H x Gm acts on Kfé 7 XN K/H by the
formula
(h1,5).(hG, b) = (h1h&(s)"' G, hibhT").

Denote by B | the fiber of the Springer map ]VH — J\/';I over x. The map
7:Gx Gm — H x Gm

sending (g, s) to (g&(s), s) identifies G x G with the stabilizer in H x G of the right
coset, of the neutral element in H/G. Any element (g, s) of G x Gy, acts on the Springer
fiber B . b

(8.)-b' = (g5V'E) g™,
This yields an isomorphism
KX)= KHXG‘“(N 6 XN, N = KGXG'"(B - O
To compute K(X), we provide an eXphCIt description of the Sprlnger fiber B |
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Lemma 9.4. The Springer fiber Bﬁ’x is a configuration of projective lines (Vi)1<i<m—1-
For1 <i < j<m-—1, the intersection V; N'V; is empty unless j =i+ 1. The fized locus
n Bl—?,x under the action ofé x Gy consists of m points p1, p2,--., Pm—1, Pm, Where py
and pp, are distinguished points on Vi and Vy, and, for 2 <i < m—1, the point p; is the
intersection of V; with Viy1.

Proof. Denote by

Frchc---CF,=U

a complete flag on the standard representation Uy of H preserved by x. The
vector space F) is a subspace of the vector space Ker(x) = Vect(uy, uz). We have
Vect(uz) = Ker(x) NIm(x). If Fy # Vect(un), then F, =x"'(Fi) = Vect(uy,us), Fz =
x’l(Fz) = Vect(uy, up, u3), ..., and finally the space F, is equal to xil(Fm_l) =
Vect(uy, uy, ..., uy,) = Uy. So we may identify V| with the projective space of lines in
Vect(u1, us). The point ps is Fi = Vect(un). If Fi = Vect(uz) C Im(x), then x~'(F}) =
Vect(u1, uz, u3) and V> can be identified with the space of lines in x~!(F;)/F;. Inside
Vect(ug, ua, u3) one has a distinguished subspace Vect(u1, uz, u3) NIm(x) = Vect(uz, us). If
F> is different from this subspace, then the whole flag F; is uniquely defined. So the point
p3 of V, corresponds to F, = Vect(up, u3). If now F; = Vect(up) and F» = Vect(uy, u3),
then x~1(F) = Vect(uy, uz, u3, us) and D3 is the space of lines in X_I(Fz)/Fz. The point
p4 of V3 corresponds to F3 = Vect(us, u3, ug), and one can continue the construction till
F,,. The point p; is the standard complete flag on Uy, and p,, is the flag Vect(uy) C
Vect(up, uz) C --- C Vect(uy, ..., uy) C Vect(uy, ..., Uy). O

This result combined with the cellular fibration lemma in [14, §5.5] implies the
following.

Proposition 9.5. The K-group KGXG‘“(B’H L) is a free R(G % G)-module of rank m.
Moreover, the R(I:I)-module structure on KGXG"’(B[;X) comes from Res? :R(PVI) —
R(G x Gp).

According to [14, Lemma 7.6.2], the assignment sending T, to s*™ for w in Wy extends
by linearity to an algebra homomorphism

€ :Hy, — Zs,s7],

and it is known that the induced Hyg-module Indg:} € = Hy QHy,, € is isomorphic to the
H

polynomial representation [14, 7.6.8]. We have the following crucial chain of isomorphisms
of Z[s, s~']-modules [14, Formula (7.6.5)]:

KAXGn (2B ) B g AxCo (B Ly % R(Typ)ls, 571 2> Indl7 e,
Wh

where the first arrow is the Thom isomorphism [14, Theorem 5.4.16], the map « is the
canonical isomorphism

KH<Gn(B) = KH¥Cm(H/B ;) = K5O (py)

= R(Ty x Gm) = R(Ty)ls, s~ '], (9.6)
and the map B is given for any A by B(e*) = e*.
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There is a natural action of Hy on K GxGm (B ) defined uniquely by the property that
the inclusion of B F 0 B yields an R(G x Gm) OR(H %Gy )]HIH—equivariant surjection
R(G x Gm) ®g jixc.. )KHxGm(B ) = KGCm(B) — KGXG“‘(BH ).
Consider the diagram

Hy ——> K(DPy,, 1, (T1(F)))

lyz ,.4“ (9.7)
KéxGm (BH’X)’

-
where y; sends T to Hy (T, Ip), and y, sends T to the action of 7 on the structure sheaf
O of By .- Note that y; and y; are surjective. We are now going to construct a morphism

3:KOCn By ) — K(DPryxis (H(F))),

which will be induced by y;. One sees that y| factors through the surjective morphism
y1 - Hy ®HWH € = K(DPy, x1;(I1(F))) of Hy-modules. For proving Theorem 9.2 we are
reduced to proving the following.

Proposition 9.8. There is a unique isomorphism of Hy-modules J making diagram (9.7)
commutative. The map J commutes with the Hg-actions.

Note that if n = m = 1 then one has Iy = H(O), and this proposition can be deduced
from [31, Proposition 4]. If m = 2, we can also provide a quick proof of the proposition; in
this case, both K (DPr, x1,;(I1(F))) and Hg QmHy,, € are free R(G x Gm)-modules of rank
2, and y; is an isomorphism.

We have seen in §7 that the module K (DPy,xy, (I1(F))) is free of rank m over R(G x
Gm). In the notation of this section, a basis of the group K (DPj; x 1, (IT(F))) is given by
the elements IC* for 0 < k < m — 1, and the action of R(é X Gy,) is given on this basis in
(7.10). Besides, according to Th(?orem 7.7, R(H) acts via Res?. A part of these properties
has been already proved for K9*Cm(B ) in Proposition 9.5. In what follows we will

construct a basis of KG*Gn By ), and we will identify the action of Hy on this basis

and the basis ICK. The morphism sending one basis to another will be induced by y;.
Surprisingly, the basis we will construct is not the canonical basis of Lusztig constructed
in [30].

We will use the polynomial representation of the affine extended Hecke algebra Hy to
describe the action of Hy on this new basis that we will construct. So let us first describe
the representation of Hpy in R(YV”H)[S, s~11. Consider the polynomial representation of
the extended affine Hecke algebra Hy of H in R(YV"H)[S s71. For v in Hy and z in
R(TH)[s s™1], write vz for the action of v on z. The element e* denotes the element in
R(Ty)[s, s~'] corresponding to A; according to [14, Formula (7.6.1)], e* as an element of
Hp acts on any element u of R(TH)[s, s~ by

et su=etu, (9.9)
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and for any simple root a, the action of Ty, on e* is given by the formula [14, Theorem
7.2.16]
et — oS zek — gSa(WM)Fa

A
T;, xe* = 1 1 (9.10)

This formula was discovered by Lusztig and was the starting point of the K-theoretic
approach to Hecke algebras. The formulas (9.9) and (9.10) together completely determine
the polynomial representation of Hpy. For A dominant, the element e¢* corresponds
in the Iwahori-Hecke algebra to the function s"Z(A)T,x7 where £(A) = (A, 20g) and Tp
is the characteristic function of the double coset Igt*Ig. Denote by w; the coweight
1,...,1,0,...,0), where 1 appears i times. For 1 <i < m, denote by w; = t®o; the
element of length zero. The element w; is the generator of the group Qp of length-zero
elements in VT/H; for any i in Z, w; = w’i. In the extended affine Hecke algebra Hpy, we
have

lei Tw,- = 1lg;-
Further, we have £(t") = £(0;) = (w;, 20,) = i(m —i), and this gives
e¥ ="M Ty, (9.11)
In R(TH)[S, s_l]7 Ty %1 = szi(m_i), and this yields
(si(m—i)ew,' Tw) %] = S2i(m_i),

and
Ty % 1 =570 e, (9.12)

Till now we have described the action of the Wakimoto objects and the elements of length
zero. We are going to compute the action of the simple reflections s; = (i,i + 1) and

the affine simple reflection s,, = t*wg, where A = (—=1,0,...,0, 1) and wg = (1, m) is the
longest element of the finite Weyl group of H. For 1 <i < m, we have Ty, T, T, I— Ty, .,
and Ty, T, Tz;]l = Ty,. For any integer j in Z, set s; = s;4,, and rewrite the above formulas
all together as

Twl Tx,' Tl;]l = Ts,-H .
Thus, for all i and j in Z,

Tu,; Ty, Tujjl =T,

For any cocharacter w, we have w;t*w; V=19 and we get
Twi Tin Tu;-l = Ttoi () «

Proposition 9.13. In the polynomial representation, the element Ty, acts on 1 by (s2 —
1) + s2m=Deé+or yhere &€ = (0,0,...,0,—1).

Proof. Since T, = TujllTS] Ty, , we get, using (9.12),

Sm

Ty, 1= (T T)) %5 1)
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Let ¢; =(0,...,0,1,—1,0...,0) and u; = (0,...,0,1,0...,0), where 1 appears in the
ith place. Then
Ty, % e”t = ®17%L,

Thus,

Ty, % 1= T Las™Te®1—e1, (9.14)
If &= —0'171(1)1 =(0,...,0,—1), then £ is a dominant character, and we have Ty Tw_l1 =
Tg’ll. Thus

wi

T =s!"me=8T
o
Finally, we have to compute

Ty, %1 =57 5T _sesmle@17o1,
%

On the one hand, the reduced decomposition of al_l iS Sp—1...5251, and it follows that
T =T, ,...T5,T; . From (9.10), we get that Ty, xe#2 = (s2 — 1)et2 4 52”1, For 2 <

o Sm—1
1
i <m—1, we have Ty, xe®! = s2e® . We also have Ty, % M2 = eH"27% = eM3 and more
generally, for 1 <i < m, Ty, xei = eti+1. By induction we get

2 2(m—1
T‘Tl_] x M2 = (s2 — 1)etn 4 52— Deor,

This implies that
Ty, %1 = (s? — 1) 52— DesFer, (9.15)
O
In order to prove Proposition 9.8, we have to study the Hg-module structure of
KG*Gm (By; ) and compare this action with the results obtained (7.10). Now let us
construct the desired basis of K éXG‘"(BI_VIx). Denote by L, the line bundle on By

corresponding to coweight A of H as in [14, §6.1.11]. The H-module HO(Bg, L;) vanishes
unless (a1 < - -+ < ap). Recall that the nilpotent subregular element x in End(Up) is such
that x(u1) = x(u2) =0 and x(u;) = u;—y for all 3 <i < m. The natural morphism from

R(]V"H)[s, 571 to KG*Gm (Bj; ) sends an element e’ to L_;. Besides, any element £ in
KHXG‘“(/\Nfg) acts on KG*Cn (By; ) as the tensor product by L, .

) H.x

Let {uy, ..., un} be the canonical basis of Uy, and let {u], ..., uy,} be the corresponding

dual basis. For 1 <i < m set

U; = Vect(uy, ..., u;),
and for 1 <i <m—1 set

Ui/ = Vect(ua, ..., Uj+1),

with U] being equal to {0}. Note that for 0 <i < m —2 the element x acts on Uj;2/U/
by zero. For 1 <i < m, let V; be the projective line classifying flags

/

U C--U_,CW; CU41 C- C Upn,
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where W; is i-dimensional. The line V; is isomorphic to P(Vect(uy, u;+1)) via the map
sending a line / to the flag given by
Uyc--U_,CleU_, CUy C- - CUp.
Then we have Bj; = = U;V; (see Lemma 9.4). Recall that there are m fixed points on B
under the action of G x G, corresponding to the following flags.
(1) pp=U,CUyC--- CUp.
(2) For2<k<m—1,
pk=U C--U,_, CUC- CUpy.
(3) pw=U{CUjC---CU)_; CUp.

Note that, for 2 < k < m — 1, the point p; equals Vy_1 N V.
Each line V; is endowed with a tautological equivariant line bundle Oy, (—1) which is
an equivariant subbundle of gOy;, @sm’ZiO‘/i. Note that, for 1 <i <m—1,

Oy, (=pi) =" "Oy(=1) and Oy, (=pis1) = g 'Oy (=D).
Thanks to Lusztig [30, §4.7], the elements Op,, Oy, (=D, ..., Oy, _,(=1) define a basis of
KGGn(By ) over R(G)[s, s 1.
For 1 <i < m, consider the line bundle L, on BI;LX whose fiber at a point Fj C --- C
Fy, is det(F;). Recall that det(U)) = sim=i=D a9 8 G x G -representation. We also have
Lo, =80 in KCn (B ).

Proposition 9.16. The set of line bundles {O, L_,,, ..., L_y, ,} forms a basis of K-group
K G*Cm (By; ) after specialization.
Proof. For 1 <k <m—1, and for any G x Gm-equivariant line bundle L on By ., we

have the following equality in K GxGm By )

k—1 m—1
L= Ly (=pj+)+Ly, + Y Ly, (=p)-
j=1 j=k+1

We apply this formula to L, . Note that
—if j <k, L“”flvj = gs(k_l)(’"_k)ovj;
—if j =k, L“’klvj = Oy, (- 1);

S >k Ly, = skm=k=D Oy, .

Hence, we get

k—1 m—1

Loy = Oy (=) + s D000y (1) + > s2000y,(-1)
j=1 j=k+1
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Lastly,

m—1

O=0, +> ™0y, (-1).

j=1
Since Ol’u Oy, (—1),. V. (—1) is a basis of KG*Gnm (BH ), the previous formulas
imply that O, L, ... me , is a free family which becomes a basis after specializing
s to ¢'/%. If we apply the duality functor, we get the same result for the family
O,L_y,....L_y, - O

Consider the family {O, smflL_w,,sz(m’z)L_wz, ...,s’"ilL_wm_l}. Thanks to
Proposition 9.16, this family is also a basis of K%*Cm (By ) after specialization. The

map y; factors through morphism J sending this basis to {ICO, e, IC’”_I}.
According to (9.12), we have

2 (Ty,) = Ty, (O) = sH =D eoi — s"(’"_")L,wi.

Hence the action of length-zero elements on the basis is compatible with their action on
{(1c’, ..., IC™} in §7, (7.10).

Now we will compute the action of the affine simple reflection s,,. Let A be the
cocharacter (—1,0,...,0, 1), and consider the associated line bundle L, (respectively,
E) on By 7. Whose fiber over a flag Fi C - C Fyy = Up is F}' ® Fy/Fn—1 (vespectively,
F/Fp— 1) The section u,, of the line bundle E yields an exact sequence

00— S2—mO — E — (Lm—l,m)pm — 0.

Note that (E)p,, = gOpm, and (L_o) p, = sz_’"(’)pm. Tensoring by L_,,, we get the exact
sequence on By |

00— szme_wl — L; — gszmepm — 0.

Consider u} A---Auy _; as the global section of L_, _, over By . It vanishes only at
Pm, and gives an exact sequence

00— g_lsz_mO — L_o, , — Ol’m — 0.
: : GxCGm (13 .
Finally, we conclude that in K> (B H’x)

Ly=s>"L_, +gs2_m(9pm, and gs2_m(9pm =gs*"L_,, _, —s*mO.

Thus
Ly =5""L_p +gs> "L_,, , —s*2"0.
From Proposition 9.13 we obtain that

y(Ty,) = T, (O) = (s> = DO+ 57" 2L; = —O 45" L_p, + 85" L, _, . (9.17)
5 (O) + s~1O corresponds to Hpy (L, Ip), and formula (9.17) is compatible

with (7.10) by using the fact that L, is isomorphic to Qg[l]( ) over }"l,f}’ Moreover,
for 1 <i <m one has T, %1 = v in the polynomial representatlon hence T, (0) = vO

Finally, s~'T.

in KG*Gnm (Bj; ,)- The other relations are readily obtained by symmetry (the action of
elements of length zero). This finishes the proof of Proposition 9.8 and so Conjecture 9.1.
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Appendix

Let k be an algebraically closed field of characteristic zero. Let G be a linear algebraic
group over Q. Denote by R(G) the representation ring of G over Q;. By equivariant
K-theory on a scheme or a stack we always mean K-theory of G-equivariant coherent
sheaves. For more details we refer the reader to [14, Chapter 5].

A.1. Generalities on convolution product in K-theory

A.1.1. Let Y be a smooth G-variety, and let w : ¥ — X be a proper G-equivariant
map. According to [14, 5.2.20], KC(Y xxY) is an associative R(G)-algebra. Moreover,
KC(Y) is naturally a left module over K9 (Y xx Y). Namely, for any L in K¢(Y xx Y)
and any F in K9(Y), consider the restriction with supports (see [14, §5.2.5 (iii)]) of an
element LR F of KG((Y xx Y) x ¥) with respect to the smooth closed embedding
id x diag
YxY — YxYxY
U U
YxxY — (Y xxY)xY,

and denote the result by L®p3F € KC(Y xxY). Then we have L% F = (p)«(L ®
PiF) e KO(Y).

A.1.2. Let Z be a smooth variety. Consider a G-equivariant morphism from Z to
X. Then K¢(Y xxY) acts on K9(Z xxY) by convolution on the right. Additionally,
this action is R(G)-linear. Namely, for any F in K9 (Z xxY) and any L in KO xx
Y), consider the element p},FXp}, L in KO(ZxxY)x (Y xxY)). Let us apply
the restriction with supports functor with respect to the smooth closed embedding
id x diag x id in the following diagram to py, F X p3,L:

id x diag x id
ZXY XY — ZxXYXxXYxY

0] U
ZxxY xxY — (ZxxY)x (Y xx7Y),

and denote the result by p},F ® p3;L in KS%(Z xx Y xx Y). The projection pi3: Z xx
Y xxY — Z xx Y is proper, and we obtain the convolution product of F and L denoted
by

FxL = (p13)«(p},F ® p33L) € KO (Z xx Y).

A.1.3. Let Y be asmooth G-variety and 7 : Y — X a proper G-equivariant morphism.
Let X — X and Z — X be G-equivariant morphisms of varieties. Assume Z to be smooth.
Then K9 (Y xx Y) acts on the left by convolution on K (Y X ¢ Z). Indeed, for any F in
KOy X% Z) and L in K9 (Y xxY), consider P, LR p3, F in KOWY xxY) x (Y Xz Z)).
Apply the restriction with supports with respect to the smooth closed embedding
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id x diag x id in the following diagram to p},L X p3, F:
id x diag x id
YxYxZ — YxYxYxZ

U U
YxxY x3Z — Y xxY)x (¥ x5 Z)

and denote the result by p},L ® p3,F in KO xxY X ¢ Z). The projection p13:Y xx
Y x¢ Z — Y x3 Z is proper, and we obtain the convolution product of L and F denoted
by

LxF = (p13)«(p},L ® piuF) € KO (Y x5 Z).

Note actually that the essential thing we need is the fact that the structure sheaf
Oy of the diagonal ¥ C Y x Y admits a finite G-equivariant resolution by locally free
Oyxy-modules of finite rank. Then restrict this resolution with respect to the flat
projection pa3 1 Y x Y x Y x Z — Y x Y. Assume Z — X to be proper; then K¢ (Z Xz Z)
acts on K9(Y X g Z) by convolutions on the right, and the actions of K¢z X% Z) and
of KG(Y xx Y) commute.

Let X be a G-fixed point in X. Assume that the morphism X — X factors through
X — X — X. Let Zx be the fiber of Z — X over X. Moreover, assume that Zs is smooth
and that it satisfies the conditions of Kiinneth of formula [14, Theorem 5.6.1]. Then, we
have

KO x52) = KC(Y x Zz) = K9(Y) ®r(6) K¢ (Z%). (A1)

Note that K% (Zx) is naturally a K¢(Z xx Z)-module, and this is action is R(G)-linear.
The action of K9(Z x Z) on K9(Y x% Z) is R(G)-linear as well. One checks that the
action of K9(Z x¥ Z) on the right-hand side of (A1) comes by functoriality from the
corresponding action on K G(Zy).

A.2. Generalities on group actions and stacks

Let G and H be two algebraic groups, let ¢ : G — H be a morphism of groups, and let
X be a G-variety. The induced H-variety H xg X with respect to ¢ is the stack quotient
(H x X)/G, where G acts on H x X by

g.(h,x) = (hp(g)™', g.x).

Let us show that (H xg X)/H and X/G are isomorphic as stacks. The space (H x¢g X)
can be represented by the groupoid

HxX#GxHxX,

where s(g, h, x) = (h, x) and t(g, h, x) = (h¢(g)~!, gx). The H-action on the objects and
morphisms of this groupoid is given by
h.(h,x) = (Wh,x)
W.(g,h,x) = (g,h'h, x).
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Thus (H xg X)/H is represented by the groupoid G given by

HXX<S:HXGXHXX,
t/
where s'(h1, g, ha, x) = (ha, x) and t'(hy, g, ha, x) = (h1ha¢p(g) ™', g.x). It is then easy to
check that the natural morphism from G to the action groupoid

X=—GxX

is an equivalence.

This kind of argument will be used repeatedly. To avoid writing down the stack
morphisms we will deal with induced varieties as if they were ordinary schemes.

Let ¢ : G — H be morphism of groups (as before), and let X" and Y’ be two G-varieties
with Y’ being smooth. Let 7’/ :Y" — X’ be a proper morphism of G-varieties. Let
X =HxgX and Y = HxgY'; X and Y are H-stacks. Then we have the following
isomorphism:

YxxY = Hxg Y xxY)

as H-varieties. So, we have an isomorphism of stack quotients
Y xxY)/H = (Y xxY")/G,
and we get an isomorphism of algebras,
KH(Y xxY) = KOS xx Y.

Let Y; be a G-scheme, and let ¥ and ¥ be two H-schemes. Consider the Cartesian
diagram

Y1XY1~’—>Y1

L

Y —7,

where the map ¥ — Y is H-equivariant and the map f :Y¥; — Y is G-equivariant, the
action of G on Y being induced by morphism ¢. The group G acts diagonally on the fiber
product Y7 xy Y. This allows us to consider the induced space H xg (Y] Xy 17). On the
other hand, we have an H-equivariant map fi : H xg Yy — Y given by fi(h, y1) = hf (y1).
Consider the Cartesian diagram

(HXGYl)Xy?—>HXGY1

N

Yy ———————,

and let H act diagonally on the fiber product (H xg Y1) xy Y.
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Lemma A 2. There is an H -equivariant isomorphism of stacks

Hxg Y1 xyY) = (HxgY)) xyY. (A3)

Proof. The isomorphism is furnished by the H-equivariant map

Hxg (Y1 xyY) —>(HxgY) xyY
(h, 1, w)) —((h, y1), hu).

For g in G, this map is given by

(hé (), (g~ 'y1, ¢ (&) 'u)) — ((hg, g y1), hu).

It is an H-equivariant isomorphism and yields the desired isomorphism (A 3). O
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